SR301

OPERATION & MAINTENANCE INSTRUCTIONS MANUAL

REMOTE SEAL

SEP / 12 SR301

Specifications and information are subject to change without notice.

Up-to-date address information is available on our website.

web: www.smar.com/contactus.asp

INTRODUCTION

The **SR301** is a Remote Seal that allows the pressure transmitter to make measures in situations where the immediate contact of the transmitter diaphragm with the process fluid it is not allowed.

The remote seal is made up by one connection with the diaphragm and one capillary connection with filling fluid. The filling fluid transfers the pressure measured in the process fluid to the transmitter sensor. The capillary connection links the seal diaphragm to the transmitter.

The remote seals available in the **SR301** series are: Flanged "T" Type (SR301T), Threaded (SR301R), Pancake (SR301P) both models having an optional flush connection, Sanitary (SR301S), Flanged with Extension (SR301E) and Pancake with Extension (SR301Q).

The SR301 is assembled with gauge and differential pressure transmitters. When used in food applications the connections are sanitary type. Level models are also available.

The SR301T, SR301E and LD300L models are available with two flange types for process connection: integral and slip-on flange. To the integral flange model the diaphragm is welded directly on the flange. To the slip-on flange model the diaphragm is not welded on the flange, so it is possible to rotate the flange, becoming easier the assembly in the field. Using the slip-on flange model it is possible to choose a less noble material to the flange than the used to the diaphragm, as Coated Carbon Steel. The figures below illustrate these flange models.

Slip-on Flange Model

Integral Flange Model

The typical applications of the remote seal on the transmitter are:

- For corrosive process fluid;
- For viscous process fluid or with solids in suspension;
- The process fluid may freeze, crystallize or solidify;
- Processes that require easy cleaning and others.

The choice of the remote seal must be based on the recommendations of this manual.

The quality of measurement is important, because there is a growing demand for better electronic accuracy and stability on transmitters.

Some remote seal characteristics influence measurement, as capillary length, work temperature, response time, correct seal model and type of installation.

For example, in regard to the **remote seal model**, it is common practice to standardize the seal type and the capillary length in the longest extension offered by supplier, aiming to guarantee interchangeability in the entire plant without considering the application characteristics for each point of measurement.

As for the **installation**, not always the device life span is taken into consideration, as it suffers various mechanical aggressions as line and tank vibration, high agitation or turbulence of the process fluid, free or inadequately supported capillaries.

There are problems also in relation to mechanical assembly, inadequate installation of gaskets, plug point centralization and alignment, excessive squeeze or bad distribution of the holding bolts.

Thus, in choosing the seal size these factors must be considered according to each case in order to guarantee excellent performance and long life span.

This manual was made to help install, operate, and maintain the SR301. It contains information about transmitter/seal assembly, organized in the following categories:

- Installation;
- Selection;
- Operation;
- Maintenance;
- Examples;
- Types of Seal and Ordering Code.

Read these instructions carefully to get the most out of the SR301.

Waiver of responsibility

The contents of this manual abides by the hardware and software used on the current equipment version. Eventually there may occur divergencies between this manual and the equipment. The information from this document are periodically reviewed and the necessary or identified corrections will be included in the following editions. Suggestions for their improvement are welcome.

Warning

For more objectivity and clarity, this manual does not contain all the detailed information on the product and, in addition, it does not cover every possible mounting, operation or maintenance cases.

Before installing and utilizing the equipment, check if the model of the acquired equipment complies with the technical requirements for the application. This checking is the user's responsibility.

If the user needs more information, or on the event of specific problems not specified or treated in this manual, the information should be sought from Smar. Furthermore, the user recognizes that the contents of this manual by no means modify past or present agreements, confirmation or judicial relationship, in whole or in part.

All of Smar's obligation result from the purchasing agreement signed between the parties, which includes the complete and sole valid warranty term. Contractual clauses related to the warranty are not limited nor extended by virtue of the technical information contained in this manual.

Only qualified personnel are allowed to participate in the activities of mounting, electrical connection, startup and maintenance of the equipment. Qualified personnel are understood to be the persons familiar with the mounting, electrical connection, startup and operation of the equipment or other similar apparatus that are technically fit for their work. Smar provides specific training to instruct and qualify such professionals. However, each country must comply with the local safety procedures, legal provisions and regulations for the mounting and operation of electrical installations, as well as with the laws and regulations on classified areas, such as intrinsic safety, explosion proof, increased safety and instrumented safety systems, among others.

The user is responsible for the incorrect or inadequate handling of equipments run with pneumatic or hydraulic pressure or, still, subject to corrosive, aggressive or combustible products, since their utilization may cause severe bodily harm and/or material damages.

The field equipment referred to in this manual, when acquired for classified or hazardous areas, has its certification void when having its parts replaced or interchanged without functional and approval tests by Smar or any of Smar authorized dealers, which are the competent companies for certifying that the equipment in its entirety meets the applicable standards and regulations. The same is true when converting the equipment of a communication protocol to another. In this case, it is necessary sending the equipment to Smar or any of its authorized dealer. Moreover, the certificates are different and the user is responsible for their correct use.

Always respect the instructions provided in the Manual. Smar is not responsible for any losses and/or damages resulting from the inadequate use of its equipments. It is the user's responsibility to know and apply the safety practices in his country.

TABLE OF CONTENTS

CHAPTER 1 - INSTALLATION	1.1
APPLICATION	1.1
GENERAL RECOMMENDATIONS FOR REMOTE SEAL USE	1.1
TYPE OF REMOTE SEAL	1.2
RECEIVING AND HANDLING	1.2
MOUNTING OF TRANSMITTER WITH REMOTE SEAL	1.2
CHAPTER 2 - SELECTION	2.1
PROCEDURE FOR REMOTE SEAL SPECIFICATION	
CHOOSING THE IDEAL ASSEMBLY FOR APPLICATION	
TRANSMITTERS RANGE FOR REMOTE SEAL APPLICATION	
DIAPHRAGM MATERIAL	
FILLING FLUIDS	
TEMPERATURE ERROR PRESENTED BY SEAL	
CALCULATION OF TEMPERATURE ERRORSEQUATIONS	
DETERMINATION OF THE SEAL/LEVEL ERROR FOR HIGH (H) OR LOW (L) SIDES	2.7
ERROR FOR TWO SEALS INFLUENCED BY TEMPERATURE SYMMETRY	
ASSEMBLY ACCURACY	
TOTAL PROBABLE ASSEMBLY ERROR	
REMOTE SEAL RESPONSE TIME	2.14
CALCULATION OF REMOTE SEAL RESPONSE TIME	
CAPILLARY LENGTH	
ERROR GUIDE TREND FOR TRANSMITTER ASSEMBLED WITH REMOTE SEAL	
CASE 1 – TPE % OF THE SPAN WITH CALIBRATION IN RANGEABILITY (1:1)	2.22
CASE 2 – TPE % OF THE SPAN WITH CALIBRATION IN RANGEABILITY (1:1)	
CASE 4 – TPE % OF THE SPAN WITH CALIBRATION IN RANGEABILITY (1.1)	2.2 4 2.25
CASE 5 – TPE % OF THE SPAN WITH CALIBRATION IN RANGEABILITY (10:1)	
CASE 6 – TPE % OF THE SPAN WITH CALIBRATION IN RANGEABILITY (10:1)	
CHAPTER 3 - OPERATION	3.1
OPERATION OF THE REMOTE SEAL SENSOR	3.1
OPERATION START UP	
CALIBRATION	3.1
OUTPUT SIGNAL TEST AND SETTING	
RANGE BEGINNING CHANGESPAN CHANGE ON DIFFERENTIAL AND FLOW PRESSURE TRANSMITTERS	3.2
LEVEL TRANSMITTER SPAN CHANGE	
CAPILLARIES FILLING FLUID EFFECT	
CHAPTER 4 - MAINTENANCE	
REMOTE SEAL CLEANING	
DISASSEMBLING AND PACKING THE REMOTE SEAL TRANSMITTER	
COMPONENT REPLACEMENT	
RETURN OF MATERIALSREMOTE SEAL SPARE PARTS	
CHAPTER 5 - EXAMPLES	
EXAMPLE 1 ERROR CALCULATION BY TEMPERATURE	
CALCULATION OF SEAL/LEVEL ERROR	
CALCULATION OF THE TRANSMITTER ACCURACY WITH SEAL/LEVEL	
CALCULATION OF THE GLOBAL ERROR OF TRANSMITTER ASSEMBLING WITH SEALS/LEVEL	5.6
CALCULATION OF THE RESPONSE TIME	
CHECKING THE CAPILLARY LENGTH	5.7

APP	ENDIX B – SMAR WARRANTY CERTIFICATE	R 1
APP	ENDIX A – SERVICE REQUEST FORM	A.1
	SR301S – SANITARY REMOTE SEAL WITHOUT EXTENSION	. 6.35
	SR301S – SANITARY REMOTE SEAL WITH EXTENSION	
	LD300S - SANITARY TRANSMITTER WITHOUT EXTENSION	
	LD300S – SANITARY TRANSMITTER WITH EXTENSION	. 6.32
	LD300L (RF/FF/RTJ) – LEVEL TRANSMITTER	. 6.31
	LD300L (RF/FF/RTJ) – LEVEL TRANSMITTER	. 6.30
	LOWER HOUSING	. 6.29
	EXTENSION	. 6.28
	SR301P – PANCAKE REMOTE SEAL WITHOUT EXTENSION AND SR301Q – PANCAKE REMOTE SEAL WITH	. 0.27
	WITH EXTENSIONSR301R – THREADED REMOTE SEAL	
	SR301T (RF/FF/RTJ) - "T" TYPE FLANGED REMOTE SEAL AND SR301E (RF/FF/RTJ) - FLANGED REMOTE SEAL	
	WITH EXTENSION	
	SR301T (RF/FF/RTJ) - "T" TYPE FLANGED REMOTE SEAL AND SR301E (RF/FF/RTJ) - FLANGED REMOTE SEAL	
D	DIMENSIONS	
	PE – TOTAL PROBABLE ERROR (SOFTWARE)	
	PERFORMANCE SPECIFICATION	
	TECHNICAL SPECIFICATION	. 6.22
Α	PPLICATION WITH HALAR FOR SEALS AND LEVELS	.6.22
	SMAR INSULATOR KIT MOUNTING	. 6.21
S	MAR INSULATOR KIT	
·	RESISTANCE TO DIAPHRAGM HYDROGEN MIGRATION	. 6.20
G	SOLD PLATED STAINLESS STEEL DIAPHRAGM	
	FORM TO INHIBIT THE HYDROGEN MIGRATION	. 6.20
L	STEPS TO FACILITATE THE MIGRATION	
	DIAPHRAGM HYDROGEN MIGRATION	
т	ECHNICAL DATA	
3	DESCRIPTION	
0	DESCRIPTION	. 0.11 6 1 1
L	EVEL TRANSMITTER – LD300L	
	DESCRIPTION	
Р	ANCAKE REMOTE SEAL WITH EXTENSION - SR301Q	
_	DESCRIPTION	6.7
Р	ANCAKE REMOTE SEAL - SR301P	
	DESCRIPTION	
S	ANITARY REMOTE SEAL – SR301S	
	DESCRIPTION	
Т	HREADED REMOTE SEAL – SR301R	6.4
	DESCRIPTION	6.2
F	LANGED REMOTE SEAL WITH EXTENSION - SR301E	6.2
	DESCRIPTION	
	T" TYPE FLANGED REMOTE SEAL - SR301T	
СНА	PTER 6 - TYPE OF SEAL AND ORDERING CODE	. 6. 1
	CHECKING THE CAPILLARY LENGTH	
	CALCULATION OF THE RESPONSE TIME	
	CALCULATION OF THE TRANSMITTER ACCURACY WITH SEAL/LEVEL	
	CALCULATION OF SEAL/LEVEL ERROR	
	ERROR CALCULATION BY TEMPERATURE	
Е	XAMPLE 2	5.9

INSTALLATION

Application

The SMAR Remote Seals must be used when:

- ✓ The process fluid is corrosive and the transmitter must be protected from this:
- ✓ The process fluid contains solids in suspension or is viscous enough to block the transmitter connections:
- ✓ The process fluid may freeze, crystallize or solidify inside the transmitter;
- ✓ It is necessary to maintain aseptic or sanitary conditions, as well as cleaning ease; and
- ✓ The process temperature is higher than 100°C.

The LD301 transmitter series manufactured by SMAR and used with remote seal keeps the characteristics of the insulated transmitters, such as external zero and span adjustments or via programmer, facilitating the device installation, functioning and maintenance.

General Recommendations for Remote Seal Use

The seals require a special construction for pressure below atmosphere (vacuum). Therefore, Data-Sheet must inform when they will be used in this condition.

The temperature variation may cause unacceptable errors in transmitter reading. To minimize this effect, see the necessary recommendations in Chapter 2 - "Temperature Error Presented by Seal".

For applications in corrosive environments, select materials compatible for contact with the process fluid. However, also consider materials not in contact with the process but subject to corrosive atmospheres or the spatter of fluids from the corrosion process.

The capillary length, the diaphragm sensitivity and the characteristics of the fill fluid (the coefficient of thermic expansion and the density) present error in the measurement making impracticable the application of the remote seal for ranges below to 0-625 mmH2O.

Should it be possible to empty the fill fluid due to puncture of the insulator diaphragm, verifies if its volume (less than 5 ml) may contaminate the process of inadmissible form. If this happen requests a seal with fill fluid compatible with the process.

Choose the fill fluid that does not evaporate at the pressure and process temperature conditions.

Type of Remote Seal

The types of remote seal, as well as the dimensions available are presented in the Chapter 6 of this Manual - "Type of Seal and Ordering Code".

Receiving and Handling

- Verify if the plate data are according to the order;
- The transmitter and the remote seal, with its respective capillary, must be in the package until
 installation to prevent possible damages;
- The set must not be handled by the capillary;
- The sealed bolts must not be handled. If this is done, the remote seal can be permanently damaged and lose the manufacturer's warranty.

Mounting of Transmitter with Remote Seal

In the Transmitter Manual see the suggested mounting positions. The Transmitter and the Remote Seal can be mounted according to the Figure 2.1 of Chapter 2 of this Manual.

The Remote Seals must be installed so that the process fluid wets all its surface. Installations that can provoke the deposition of any incrustation on the diaphragm must be avoided.

Choose a place free from mechanical shocks (seal and transmitter) that facilitates access to the measuring points. The ambient temperature must be within the limits allowed by the Transmitter Manual.

Use a valve in the process connection, before the seal, as this facilitates the transmitter calibration and the seal maintenance.

The maximum upper or lower height allowed for the transmitter on the remote seal, depends on the density of the seal fill fluid and the pressure on it. If this height is exceeded it may cause saturation in the transmitter due to difference of the hydrostatic columns in both sides.

The correct heights of the transmitter, in relation to the seal, are shown in Table 2.3 of Chapter 2 of this Manual.

The capillaries must be held firm to avoid oscillations in the reading.

Choose an installation site lowly sensitive to temperature variation or, instead, keep the temperature equal in both sides of the seal.

The minimum radius of the capillary bending is 70mm. In order to prevent damages, avoid twisting and folding the capillary.

The connections for the lower "L" side and higher "H" side are indicated in the transmitter by letters "L" and "H".

In the seals horizontally mounted, the gasket must be centralized and not be in contact with the diaphragm. Hold the set in the counterflange by applying equal torques in the bolts.

ATTENTION

In hot environment, the transmitter and the seals must be installed in a way to prevent the exposition to the sun, as much as possible. Also avoid the installation closed with lines and vases subject to high temperatures. The use of sun protector or heat shield to protect both devices from external heat source is recommended.

The temperature increase, due to direct exposition to the sun, can cause a zero deviation, mainly if one of the sides will be exposed. The seal, due to its metal construction, can have an increase of 60°C in the temperature when exposed to the sun. For example, a transmitter with a remote seal of 2", calibrated in 1000 mmH2O, with capillary of 1m, exposed to 20°C of variation will have an error of 49 mmH2O (4.9%). Check Chapter 2 for more information about temperature effect.

SELECTION

Procedure for Remote Seal Specification

Tables 2.1 and 2.2 show, respectively, the steps that must be followed for the ideal Remote Seal specification and the recommendations to improve its performance.

STEP	PROCEDURE	PAGE
	Type of assembly and calculation of the transmitter range	2.2
1	Transmitter Range	2.3
'	Diaphragm Material according to chemical compatibility of the process	2.4
	Filling Fluid	2.4
	Maximum Seal temperature variation in relation to calibration temperature	
	Maximum capillary temperature variation in relation to calibration temperature	2.8
2	Maximum body temperature variation in relation to calibration temperature	
	Maximum and Minimum process pressure	-
	Type of Seal according to process connection	2.9
	Capillary Length	2.8
3	To inform about the error and accuracy of the pressure transmitter	-
4	Calculate temperature error	2.7
5	Transmitter Assembly Accuracy with the Remote Seal / Level	2.12
6	Transmitter Global Error with the Remote Seal / Level	2.13
7	Calculate the Response Time	2.14
8	Verify the Capillary Length	2.16
9	Use the guidelines shown in Table 2.2. Make changes possible in order to improve performance	2.1

Table 2.1 - Steps for Remote Seal Selection

OBJECTIVE	Reduce the Error due to Temperature	Reduce the Response Time	Improve the Accuracy
Choose the oil with lesser coefficient of volumetric expansion (see Table 2.5)	©	(⊜
Choose the oil with lesser viscosity (see Table 2.5)	(2)	©	⊜
Increase the seal diaphragm diameter	©	(1)	⊜
Decrease the capillary length	©	©	⊜
Specify the equal capillary lengths of both sides	©	②	⊜
Install the equipment preferably where lesser variation of temperature occurs	☺	(2)	⊜
Choose the transmitter in the upper limit of the range (1:1)	⊕	(1)	©

Table 2.2 - Recomendations to Improve the Remote Seal Performance

Legend: © - Positive Action / © - Neutral Action / ® - Negative Action

Choosing the Ideal Assembly for Application

Figure 2.1 shows the most common types of remote seal assembly and its applications.

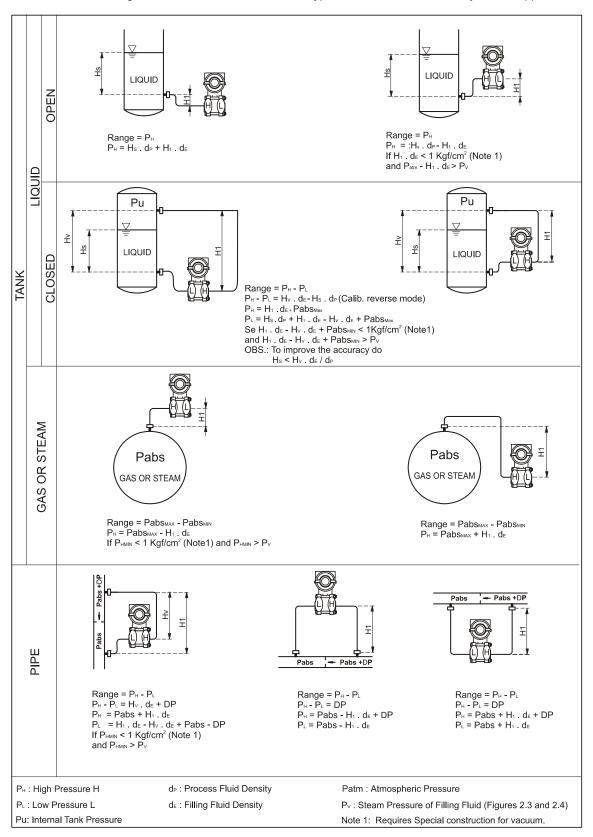


Figure 2.1 – Types of Remote Seal Assembly and Applications

Transmitters Range for Remote Seal Application

Verify in Table 2.3 the transmitter range, the pressure and overpressure limit and the applicable static pressure.

After calculating the ranges according to the type of installation, always try to work with the upper limits of each transmitter range to achieve the best equipment accuracy.

TRANSMITTER	LIMITS		TRANSMITTER	R RANGE (-URL TO	URL) (1)	
TRANSIVITTER	LIMITS	Range 2	Range 3	Range 4	Range 5	Range 6
	Pressure	-50 to 50 kPa	-250 to 250 kPa	-2500 to 2500 kPa		
LD30XD	Overpressure and Static Pressure	160 bar	160 bar	160 bar		
	Pressure	-50 to 50 kPa	-250 to 250 kPa	-2500 to 2500 kPa	-25 to 25 MPa	
LD30XH	Overpressure and Static Pressure	320 bar	320 bar	320 bar	320 bar	
LD30XM	Pressure	-50 to 50 kPa	-100 to 250 kPa	-100 to 2500 kPa	-0.1 to 25 MPa	-0.1 to 40 MPa
EDOONIN	Overpressure and Static Pressure	160 bar	160 bar	160 bar	400 bar	520 bar
	Pressure	0 to 50 kPa	0 to 250 kPa	0 to 2500 kPa	0 to 25 MPa	0 to 40 MPa
LD30XA	Overpressure and Static Pressure	160 bar	160 bar	160 bar	320 bar	520 bar
	Pressure	-50 to 50 kPa	-250 to 250 kPa	-2500 to 2500 kPa	-25 to 25 MPa	
LD30XL / LD30XS	Overpressure and Static Pressure	(2)	(2)	(2)	(2)	

⁽¹⁾ The calibration maximum limit of the remote seal or level/sanitary transmitter should be smallest value between the connection/flange pressure limit (Tables 1 to 6, chapter 6) and the upper range limit of the transmitter (LIPL)

Table 2.3 – Transmitter Pressure Range, Overpressure Limits and Static Pressure

Where:

LD30XD: Differential Pressure Transmitter (Family 301, 302 and 303)

LD30XH: Differential Pressure Transmitter - High Static Pressure (Family 301, 302 and 303)

LD30XM: Gage Pressure Transmitter (Family 301, 302 and 303) LD30XA: Absolute Pressure Transmitter (Family 301, 302 and 303)

LD30XL: Level Transmitter (Family 301, 302 and 303) LD30XS: Sanitary Transmitter (Family 301, 302 and 303)

For more information, consult SMAR Pressure Transmitters Catalogs and Manuals.

NOTE

The overpressure shown in Table 2.3 above, does not damage the transmitter, although it will be necessary to recalibrate the transmitter.

Figure 2.2 below shows the Transmitter Operation Range, where the work range can be located in many positions within range.

range limit of the transmitter (URL).
(2) According to flange/connection pressure limit. See Tables 1, 2, 3, 5 and 6 – Chapter 6.

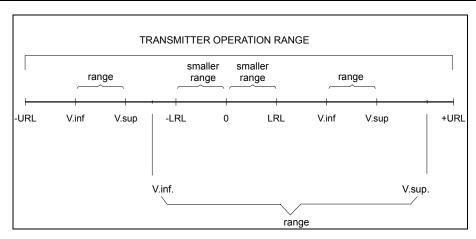


Figure 2.2 – Transmitter Operation Range

Where:

URL –Transmitter Range Upper Limit LRL –Transmitter Range Lower Limit V. sup. –Work Range Upper Value V. inf – Work Range Lower Value

Diaphragm Material

The diaphragm material should be selected considering its chemical resistance to external agents, process fluid and temperature involved.

For more information about materials corrosion, consult the Smar's Application Engineer.

Filling Fluids

Filling fluids must be selected considering its physical properties at extreme conditions of temperature, pressure, chemical compatibility with the process fluid and its contamination in a unacceptable way.

Table 2.4 shows the filling fluids used by Smar with some physical properties and types of application. On Figures 2.3 and 2.4 the Steam Pressure curves (mmHg) are shown against the Temperature (\mathfrak{C}) of these fluids.

Fluid	Limit of ℃ Temperature (℉) to Pabs < 1 atm (Vacuum) (3)	Limit of °C Temperature (°F) to Pabs > 1 atm	Viscosity (cSt) at 25℃	Density (g/cm3) at 25℃	Volumetric Expansion Coefficient 1/°C (1/°F)	Types of Application
Sillicone DC200	-40 to 100 (-40 to 212) (3)	-40 to 170 (-40 to 338)	20	0.950	0.001070 (0.000594)	General (Atoxicity, not irritating, odorless, Food Processing)
Sillicone DC704	0 to 200 (+32 to 392) (3)	0 to 315 (+32 to 599)	39	1.070	0.000950 (0.000528)	General (High Temperatures and Vacuum)
Fluorolube MO-10	N.A. (2)	-20 to 100 (-4 to 212)	50	1.910	0.000874 (0.000486)	Oxygen, Chlorine, Nitric Acid
Syltherm 800	N.A. (2)	-40 to 350 (-40 to 662)	10	0.934	0.001500 (0.000833)	General (High Temperatures)
Neobee M20 (1)	-15 to 120 (+5 to 248) (3)	-15 to 225 (+5 to 437)	9.5	0.920	0.001008 (0.000560)	Foods, Beverage and Pharmaceuticals
Glycerin (50%) and Water (50%)	N.A. (2)	-15 to 93 (+5 to 199.4)	12.5	1.130	0.000500 (0.000280)	Foods
Fomblim	-20 to 100 (-4 to 212) (3)	-20 to 200 (-4 to 392)	48	1.87	0.000900 (0.000500)	Low toxicity, excellent compatibility with metals, plastics and elastomers, excellent performance in high vacuum
Krytox	-40 to 100 (-40 to 212) (3)		42	1.88	0.000900 (0.000500)	Inert, nontoxic, biologically inert, nonexplosive, nonreactive to all elastomers, plastics and metals, excellent performance in high vacuum
Halocarbon	-45 to 80 (-49 to 176) (3)	-45 to 130 (-49 to 266)	5.6	1.85	0.001199 (0.000667)	Inert, low odor, low toxicity, noncorrosive. Standard for manufacturers of oxygen and reactive liquids

Table 2.4 - Filling Fluid Characteristics

Legend: (1) Propylene Glycol Diester of Octanoato / Decanoato; (2) N.A. – Nonapplicable; (3) Consult graphs in the Figures 2.3 and 2.4 below when the vacuum pressure is known.

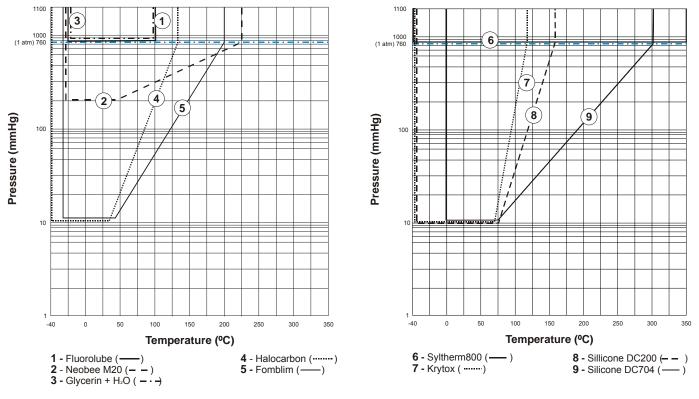


Figure 2.3 – Pressure x Temperature Curve (1)

Figure 2.4 – Pressure x Temperature Curve (2)

Temperature Error Presented by Seal

With the variation of ambient or process temperature, the filling fluid, which fills the internal cavity of the remote seal and capillaries, its volume also varies. The volume variation provokes a displacement of the seal diaphragm. To absorb this volume variation, the diaphragm, due to its characteristic of rigidity, reacts with a change in pressure that it exerts on the filling fluid. This change causes a deviation in relation to the process pressure, which is the error caused by the temperature variation.

This error can be minimized if some important cautions are taken when choosing the remote seal model, the capillary length and the conditions of temperature and process ambient.

The seal model also counts, as the bigger is the diaphragm diameter of the remote seal, the less rigidity it presents, achieving more absorbing capability of volume variations without causing too many errors in the transmitter.

The capillary length has a direct effect, namely, the longer its length, the greater the volume of the filling fluid, causing higher volume variation with the temperature.

The influence of the temperature conditions can be reduced through the installation of the seal in places less susceptible to it. If possible choose a transmitter with identical seals in the two sides of the pressure plug, and that possess similar conditions of temperature variation and length, so that the two sides suffer the same temperature conditions. Thus the errors tend to minimize.

With basis on these information, it was developed a process of simplified calculation that takes into account the internal volumes of the remote seal, the capillary lengths, the rigidity of the sensing diaphragms and the coefficient of volume expansion of the filling fluid, thus supplying the approximate error calculation caused by the temperature variation.

Calculation of Temperature Errors

Remote seal temperature errors are due to the volume variation of the filling fluid in the transmitter body, extension, capillary and remote seal. Following, the necessary information for the error calculation are described.

Equations

To obtain a volume variation for each leg of the remote seal, the temperature variation in the seal, in the capillary and in the transmitter body must be known and then insert the value in the equations below.

$$^{\Delta}T_{\text{seal}} = T_{\text{seal}} - Tref$$
 (2.1)

$$\Delta T_{cap} = T_{cap} - Tref \tag{2.2}$$

$$^{\Delta}T_{body} = T_{body} - Tref \tag{2.3}$$

$$\Delta V_{rdf} = V_{rdf} \cdot \Delta T_{seal} \cdot \gamma_{oil} \tag{2.4}$$

$$\Delta V_{ext} = (0.012 + 0.9 \cdot L_{ext}) \cdot \Delta T_{seal} \cdot \gamma_{oil}$$
(2.5)

$$\Delta V_{cap} = (0.9 \cdot L_{cap}) \cdot \Delta T_{cap} \cdot \gamma_{oil}$$
 (2.6)*

$$^{\Delta V}_{body} = (1.154) \cdot ^{\Delta T}_{body} \cdot ^{\gamma}_{oil}$$
 (2.7)

$$\Delta V_{Total} = \Delta V_{rdf} + \Delta V_{ext} + \Delta V_{cap} + \Delta V_{body}$$
 (2.8)

$$V_{Total} = \Delta V_{total}$$
 , (diaphragm initial volume is zero) (2.9)

$$Error = Error (Graphic) \cdot Fm$$
 (2.10)

$$Error\% = \frac{Error}{Calibrated\ Span} \cdot 100 \tag{2.11}$$

Where:

ΔT_{seal}: Variation in the seal temperature in relation to the calibration temperature (°C)

ΔT_{cap}: Variation in the capillary temperature in relation to the calibration temperature (°C)

 ΔT_{body} : Variation in the body temperature in relation to the calibration temperature (°C)

T_{seal}: Seal Temperature (°C)

T_{cap}: Capillary temperature (°C)

T_{body}: Transmitter body temperature (°C)

T_{ref}: Reference Temperature equal to 25°C

V_{rdf}: Volume of the diaphragm reservoir (cm³)

 ΔV_{rdf} : Variation in the reservoir volume (cm³)

 ΔV_{ext} : Variation in the extension volume (cm³)

 ΔV_{cap} : Variation in the capillary volume (cm³)

 ΔV_{body} : Variation in the body volume (cm³)

△V_{total}: Volume variation in the capillary, extension and seal set (cm³)

V_{total}: Total diaphragm volume after contraction or expansion effect

γoil: Volume expansion coefficient of the oil presented in the Table 2.5 (1/ °C)

 L_{cap} : Capillary length (meters). For the LD30XL consider L = 0.5m

Lext: Extension length (meters)

Error: Error (mmH₂O @ 4 °C)

Error(Graphic): Error Removed from Figures 2.6, 2.7 and 2.8 in terms of the V_{total}, for diaphragm of 0.05 mm, 0.075 mm and 0.1mm respectively.

Error%: Error Percentage relative to Transmitter Calibration

Calibrated Span: Transmitter Calibration (mmH2O @ 4 °C)

Fm: Diaphragm Material Factor

*Only for capillary standard diameter (≈1.0 mm)

ATTENTION

The temperature of reference for adjustment is 25 $^{\circ}$ C. The Errors in terms of the temperature occur with the deviation of the temperature beyond 25 $^{\circ}$ C.

Determination of the Seal/Level Error for High (H) or Low (L) Sides

a) Upper Variation of Temperature

In this case adopt the temperature variation above zero line.

b) Lower Variation of Temperature

In this case adopt the temperature variation below zero line.

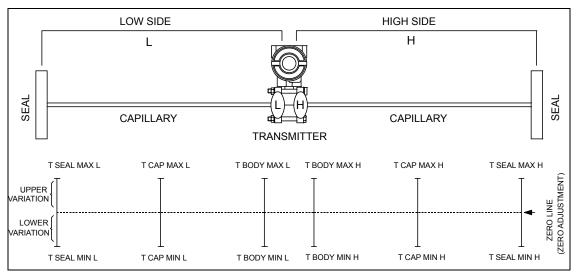


Figure 2.5 – Transmitter/Seal Set Temperatures

Where:

- T seal max H: Maximum Temperature on the seal high Side (°C)
- T seal min H: Minimum Temperature on the seal high Side (°C)
- T cap max H: Maximum Temperature on the capillary high Side (°C)
- T cap min H: Minimum Temperature on the capillary high Side (°C)
- T body max H: Maximum Temperature on the body high Side (°C)
- T body min H: Minimum Temperature on the body high Side (°C)
- T seal max L: Maximum Temperature on the seal low Side (°C)
- T seal min L: Minimum Temperature on the seal low Side (°C)
- T cap max L: Maximum Temperature on the capillary low Side (°C)
- T cap min L: Minimum Temperature on the capillary low Side (°C)
- T body max L: Maximum Temperature on the body low Side (°C)
- T body min L: Minimum Temperature on the body low Side (°C)

Error for Two Seals Influenced by Temperature Symmetry

If the transmitter has a remote seal, the error is directly obtained using Figures 2.6, 2.7 and 2.8. In case the transmitter has two remote seals, it will be necessary to know the thermal symmetry in the seals.

We can say that a Set of Seals/Level and Transmitter has thermal symmetry when the temperatures applied on the High side (H) are equal to the temperatures applied on the Low side (L). When they are different there is a Thermal Asymmetry.

After determining the thermal symmetry, the error for each one of the seals must be found independently (see Figures 2.6, 2.7 and 2.8). Then, substitute these values in equations 2.12 or 2.13.

Thermal Symmetry:
$$Es = \sqrt{(E_H)^2 + (E_L)^2} \times \left(\frac{1}{\sqrt{6}}\right)$$
 (2.12)

Thermal Asymmetry:
$$Es = \sqrt{(E_H)^2 + (E_L)^2}$$
 (2.13)

Where:

Es: Total error of both remote seals due to temperature variation (mmH2O @ 4°C)

 E_{L} : Error on the remote seal L side (mmH₂O @ 4°C)

 E_H : Error on the remote seal H side (mmH₂O @ 4°C)

ATTENTION

The effects caused by geometric variations, as the increase of the capillary length or diameter are considered in the calculations of diaphragm errors in terms of the diaphragm families. Therefore, when calculating the errors of the High or Low sides, the differences between capillaries diameters and length are already taken into account.

Table 2.5 below shows the diaphragm family in terms of the transmitter/seal model.

Model Diaphragm Family	LD301L (WITHOUT /EXT)	LD301L (WITH/ EXT)	\$R301T	SR301E	LD/SR 301 S (WITHOUT/ EXT)	LD/SR 301 S (WITH/ EXT)	SR301 R	SR301P	\$R301Q
0	_	_	1" DN25	_	1.1/2" (SMS;RJT *;IDF *;TC)	DN25	_	_	_
1	1.1/2" DN40				-	DN40 DN50 2" (SMS;RJT;IDF;TC) 1.1/2" (SMS;RJT;IDF;TC)	_	_	1.1/2" DN40
2	_	2" DN50	_	2" DN50	DN40 DN50 2" — (SMS;RJT;IDF; TC)		_	_	2" DN50
3	1.1/2" DN40	_	1.1/2" DN40	_	_	_	_	1.1/2" DN40	_
4	2" DN50	_	2" DN50	_	_	_	2500 PSI	2" DN50	_
5	_	2 1/2" (Special)	_	2 ½" (Special)			_	_	_
6	_	_	_	_	DN 80 3" (SMS;RJT;IDF;TC)		_	_	_
7	3" DN80	3" DN80	3" DN80	3" DN80	DN 80 3" (SMS *;RJT — — — *;IDF *;TC)		3" DN80	3" DN80	
8	4" DN100	4" DN100	4" DN100	4" DN100	_	_	_	4" DN100	4" DN100

^{*} Projects in process.

Legend: SR301T – "T" Type Flanged; SR301R – Threaded; SR301S – Sanitary; SR301E – Flanged with Extension; SR301P – Pancake; SR301Q –
Pancake with Extension; LD301L – LD Level; LD301S – Sanitary;.

Table 2.5 - Diaphragm Family

The Table 2.6 below shows the value of the diaphragm reservoir volume (Vrdf) for each family.

Diaphragm Family	Vrdf (x 10 ⁻² cm³)
0	18.1
1	20.4
2	24.8
3	29.2
4	38.4
5	47.7
6	82.8
7	105.6
8	274.2

Table 2.6 - Diaphragm Volume

The Table 2.7 below shows the value of the material factor (Fm) in function of the diaphragm material.

Diaphragm Material	Fm
316/316L SST	1.00
Hastelloy	1.08
Monel	0.96
Tantalum	0.99
Titanium	0.56
304/304L SST	1.00
Duplex	1.01
Super Duplex	1.05

Table 2.7 - Materials Factor

The Table 2.8 below shows the crescent classification (better to worst) of the diaphragms in relation to performance and mechanical resistance.

Diaphragm Material	Performance	Mechanical Resistance
316L SST	4	6
Hastelloy	7	4
Monel	2	5
Tantalum	3	7
Titanium	1	2
304L SST	4	8
Duplex	5	3
Super Duplex	6	1

Table 2.8 - Comparative

The Figure 2.6 shows the error of the remote seal in terms of the diaphragm total volume (V_{total}) for diaphragms of 0.05mm thick in 25°C.

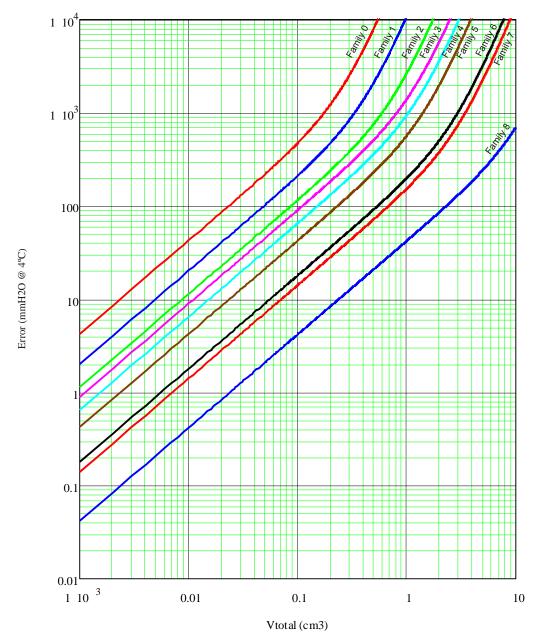


Figure 2.6 – Error for Diaphragms with 0.05mm thickness

The Figure 2.7 shows an error of the remote seal in terms of the diaphragm total volume (V_{total}) for diaphragms of 0.075mm thick in 25°C.

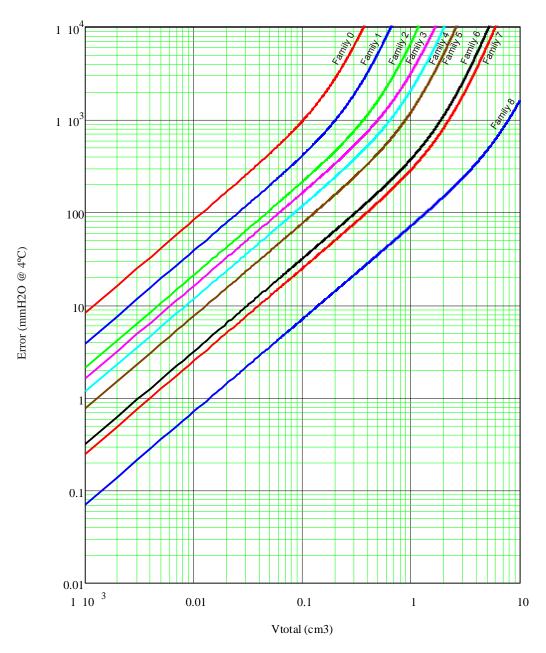


Figure 2.7 – Error for Diaphragms with 0.075mm thickness

The Figure 2.8 shows an error of the remote seal in terms of the diaphragm total volume (V_{total}) for diaphragms of 0.1mm thick in 25°C

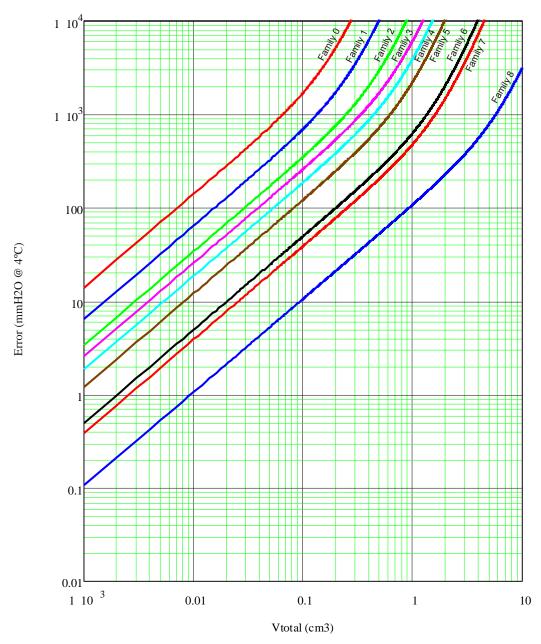


Figure 2.8 - Error for Diaphragms with 0.1mm thickness

Assembly Accuracy

The transmitter accuracy is not significantly modified by the addition of seals/level. However, the error of resulting measurement of the combination significantly increases due to geometric and physical parameters in terms of the temperature variation.

Total Probable Assembly Error

The Total Probable Error (TPE) of the transmitter and seal/level assembly is a measure that involves all the probable error sources in this measurement, such as: transmitter accuracy, ambient temperature, static pressure, vibration and changes in the transmitter power supply.

To know the TPE of the transmitter and remote seal assembly, use the method of the square root addition for each error as shown in equation 2.14:

$$ETP = \sqrt{(E_S)^2 + (E_T)^2}$$
 (2.14)

ETP: Total Probable Error of the transmitter and remote seal assembly (mmH₂O)

 $E_{\rm s}$: Total Error of both remote seals due to temperature variation (mmH₂O)

 $E_{\scriptscriptstyle T}$: Pressure Transmitter Error (mmH₂O) – See the Transmitter Manual

Remote Seal Response Time

The response time of a measurement system having a remote seal with capillary and a transmitter is defined as the time the transmitter pressure takes to read 63% of the pressure variation value applied on a 10% to 90% range of the measured pressure, as in Figure 2.9.

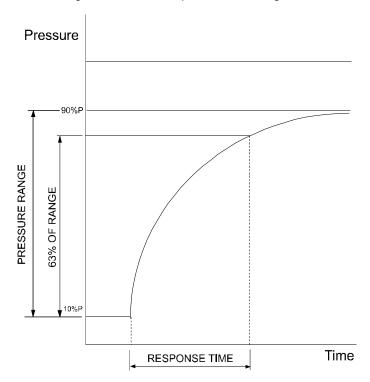


Figure 2.9 – Response Time

The response time is the result of the resistance of the oil displacement in the capillary, so that, the bigger the capillary and the oil viscosity are, the longer will be the response time. The transmitter range influences the response time due to the rigidity of the sensor diaphragm, so that the wider the range, the quickest the response time.

The response time is also influenced by the viscosity of the filling fluid, which varies with the temperature. The higher the temperature, the lesser the viscosity of the filling fluid, which, consequently, reduces the response time.

Calculation of Remote Seal Response Time

The response time is obtained through the equation 2.15, below:

$$TR_S = TR_{listed}$$
 . L

(2.15)

Where:

 TR_s : Remote seal response time (seconds)

TR : Response Time through the capillary length (seconds/meters) – See Table 2.10 listed

L: Capillaty length (meters)

NOTE

The values obtained for the seal response time do not consider the response time of the transmitter. Therefore, the response time of the seal and transmitter set will be the addition of both.

NOTE

Capillary lengths whose difference of response time between H and L sides exceeds 0.5s must be avoided. This measure prevents wrong measurements.

œ	(°C)		R	esponse T	ime in se	conds/me	ter of capi	llary (s/m)) ⁽⁶⁾	
TRANSMITTER RANGE	CAPILLARY TEMPERATUR E(°C)	DC 200	DC 704	FLUOROLUBE	SYLTHERM 800	NEOBEE M20	Glycerin 50% + Water 50%	FOMBLIM	KYTROX	HALOCARBOM
	100 ⁽⁴⁾	2.69E-01	3.99E-01	1.72E-01	1.09E-01	5.59E-02	2.16E-02	2.66E-01	3.08E-01	8.37E-02
	75	3.38E-01	5.75E-01	2.84E-01	1.52E-01	8.89E-02	4.32E-02	4.46E-01	4.83E-01	1.19E-01
	50	4.55E-01	9.29E-01	7.86E-01	2.23E-01	1.57E-01	1.19E-01	1.00E+00	9.85E-01	1.88E-01
	25	6.98E-01	1.72E+00	3.78E+00	3.47E-01	3.15E-01	5.32E-01	3.41E+00	2.90E+00	3.80E-01
2	10	9.87E-01	2.69E+00	1.28E+01	4.67E-01	5.09E-01	2.01E+00	9.03E+00	6.92E+00	6.90E-01
	0	1.30E+00	3.74E+00	3.26E+01	5.77E-01	7.21E-01	6.20E+00	1.94E+01	1.37E+01	1.13E+00
	-10	1.78E+00	N.A.	9.18E+01	7.21E-01	1.04E+00	N.A.	4.62E+01	2.99E+01	1.99E+00
	-20	2.56E+00	N.A. N.A.	2.86E+02	9.12E-01	N.A. N.A.	N.A.	1.22E+02	7.19E+01	3.86E+00
	-40 100 ⁽⁴⁾	6.10E+00 5.39E-02		N.A. 3.45E-02	1.51E+00 2.18E-02		N.A.	N.A. 5.32E-02	5.76E+02 6.17E-02	1.98E+01
	75	6.75E-02	7.97E-02 1.15E-01	5.68E-02	3.03E-02	1.12E-02 1.78E-02	4.32E-03 8.65E-03	8.91E-02	9.67E-02	1.67E-02 2.38E-02
	50	9.09E-02	1.86E-01	1.57E-01	4.45E-02	3.15E-02	2.38E-02	2.01E-01	1.97E-01	3.76E-02
	25	1.40E-01	3.45E-01	7.56E-01	6.94E-02	6.30E-02	1.06E-01	6.81E-01	5.80E-01	7.60E-02
3	10	1.40E-01 1.97E-01	5.38E-01	2.56E+00	9.34E-02	1.02E-01	4.02E-01	1.81E+00	1.38E+00	1.38E-01
	0	2.60E-01	7.48E-01	6.53E+00	1.15E-01	1.02L-01 1.44E-01	1.24E+00	3.88E+00	2.75E+00	2.25E-01
	-10	3.57E-01	N.A.	1.84E+01	1.44E-01	2.09E-01	N.A.	9.24E+00	5.98E+00	3.98E-01
	-20	5.12E-01	N.A.	5.72E+01	1.82E-01	N.A.	N.A.	2.45E+01	1.44E+01	7.73E-01
	-40	1.22E+00	N.A.	N.A.	3.03E-01	N.A.	N.A.	N.A.	1.15E+02	3.96E+00
	100 ⁽⁴⁾	4.86E-03	7.19E-03	3.11E-03	1.97E-03	1.01E-03	3.90E-04	4.80E-03	5.56E-03	1.51E-03
	75	6.09E-03	1.04E-02	5.13E-03	2.74E-03	1.60E-03	7.80E-04	8.04E-03	8.72E-03	2.14E-03
	50	8.20E-03	1.68E-02	1.42E-02	4.02E-03	2.84E-03	2.15E-03	1.81E-02	1.78E-02	3.39E-03
	25	1.26E-02	3.11E-02	6.82E-02	6.26E-03	5.68E-03	9.60E-03	6.15E-02	5.24E-02	6.86E-03
4	10	1.78E-02	4.85E-02	2.31E-01	8.42E-03	9.18E-03	3.62E-02	1.63E-01	1.25E-01	1.25E-02
	0	2.35E-02	6.75E-02	5.89E-01	1.04E-02	1.30E-02	1.12E-01	3.50E-01	2.48E-01	2.03E-02
	-10	3.22E-02	N.A.	1.66E+00	1.30E-02	1.89E-02	N.A.	8.33E-01	5.39E-01	3.59E-02
	-20	4.61E-02	N.A.	5.16E+00	1.65E-02	N.A.	N.A.	2.21E+00	1.30E+00	6.97E-02
	-40	1.10E-01	N.A.	N.A.	2.73E-02	N.A.	N.A.	N.A.	1.04E+01	3.57E-01
	100 ⁽⁴⁾	2.11E-04	3.13E-04	1.35E-04	8.54E-05	4.38E-05	1.69E-05	2.09E-04	2.42E-04	6.56E-05
	75	2.65E-04	4.50E-04	2.23E-04	1.19E-04	6.96E-05	3.39E-05	3.49E-04	3.79E-04	9.31E-05
	50	3.56E-04	7.28E-04	6.16E-04	1.75E-04	1.23E-04	9.32E-05	7.87E-04	7.72E-04	1.47E-04
	25	5.47E-04	1.35E-03	2.96E-03	2.72E-04	2.47E-04	4.17E-04	2.67E-03	2.27E-03	2.98E-04
5	10	7.74E-04	2.11E-03	1.00E-02		3.99E-04	1.57E-03	7.08E-03		
	0	1.02E-03	2.93E-03	2.56E-02	4.52E-04	5.65E-04	4.86E-03	1.52E-02	1.08E-02	8.82E-04
	-10	1.40E-03	N.A.	7.20E-02	5.65E-04	8.19E-04	N.A.	3.62E-02	2.34E-02	1.56E-03
	-20	2.00E-03	N.A.	2.24E-01	7.15E-04	N.A.	N.A.	9.59E-02	5.64E-02	3.03E-03
	-40	4.78E-03	N.A.	N.A.	1.19E-03	N.A.	N.A.	N.A.	4.52E-01	1.55E-02
	100 ⁽⁴⁾	1.66E-04	2.46E-04	1.06E-04	6.71E-05	3.44E-05	1.33E-05	1.64E-04	1.90E-04	5.16E-05
	75	2.08E-04	3.54E-04	1.75E-04	9.34E-05	5.48E-05	2.66E-05	2.75E-04	2.98E-04	7.32E-05
	50	2.80E-04	5.73E-04	4.84E-04	1.37E-04	9.70E-05	7.33E-05	6.19E-04	6.07E-04	1.16E-04
	25	4.30E-04	1.06E-03	2.33E-03	2.14E-04	1.94E-04	3.28E-04	2.10E-03	1.79E-03	2.34E-04
6	10	6.08E-04	1.66E-03	7.89E-03	2.88E-04	3.13E-04	1.24E-03	5.56E-03	4.26E-03	4.25E-04
	0	8.01E-04	2.31E-03	2.01E-02	3.56E-04	4.44E-04	3.82E-03	1.20E-02	8.46E-03	6.93E-04
	-10 20	1.10E-03	N.A. N.A.	5.66E-02	4.44E-04	6.44E-04	N.A. N.A.	2.85E-02	1.84E-02	1.23E-03
	-20 -40	1.58E-03 3.76E-03	N.A.	1.76E-01 N.A.	5.62E-04 9.33E-04	N.A. N.A.	N.A.	7.54E-02 N.A.	4.43E-02 3.55E-01	2.38E-03 1.22E-02
	- 4 U	J.10L-U3		IN.A.		IN.A.	IN./A.	IN.A.	J.JJL-U1	1.446-04

Table 2.9 - Remote Seal Response Time

- Notes:

 (1) The response time is defined as the time that the indication of the instrument pressure takes to show 63% of the pressure variation value applied in the 10% to 90% range of the measured pressure.

 (2) If the transmitter has two capillaries add their lengths to calculate the response time.

 (3) N.A: No applicable due to temperature limit.

 (4) The temperature limit for (Water 50% + Glycerin 50%) is 93°C.

 (5) The user will have to analyze the total response time to the related application.

 (6) Without the transmitter response time.

- (7) The table above is only for capillary standard diameter (≈1.0 mm)

Capillary Length

The capillary length is a variable defined in terms of the application need, as for example, the tank height or distance of the remote point to be measured.

To evaluate the maximum capillary length, three conditions must be fulfilled:

 To check if the expanded or contracted volume relative to the initial volume of the corrugated is within Lower and Upper limits (VC_{min} and VC_{max});

$$VC_{\min} \le V_{total} \le VC_{\max}$$
 (2.16)

Where:

 V_{total} : Total diaphragm volume after expansion or contraction effect (defined in this Chapter)

 $VC_{
m min}$: Minimum Critical Volume of the Seal $VC_{
m max}$: Maximum Critical Volume of the Seal

To obtain the $VC_{\rm max}$ value, use Tables 2.10 to 2.17, where the maximum critical volume for different materials and diaphragm thickness in function of temperature is presented

To obtain the VC_{\min} value use the Table 2.18, where the minimum critical volume for the transmitter range and applied process pressure is presented.

$$\%VC_{\min} = \frac{MVP}{URL} \times 100 \tag{2.17}$$

Where

 $\%VC_{\mathrm{min}}$: Percentage of VC_{min} regarding URL

MVP : The higher value between $|V.\sup|$ and $|V.\inf|$

- 2) Verify if the response time is compatible with the process variables and there will be enough time so that the pressure transmission guarantees the application control limits.
- 3) Verify if the assembly global error is within client expectations.

After these three analysis, the maximum remote seal capillary length needed is acceptable.

	VCmax (10 ⁻² x cm ³) for 316L Stainless Steel Diaphragm																	
<u> </u>	# 0.05mm										# 0.1mm							
Tp (°C)	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	9.6	15.9	24.3	29.8	36.6	47.9	86.6	100.6	248.9	8.1	13.4	21.2	26.7	32.6	42.2	76.6	88.4	231.4
75	9.0	14.8	22.6	27.6	34.0	44.5	80.5	93.7	230.5	7.6	12.6	19.8	24.7	30.5	39.5	71.8	82.9	215.7
125	8.2	13.6	20.7	25.2	31.0	40.8	73.7	85.9	210.0	7.0	11.6	18.2	22.9	28.0	36.4	66.2	76.7	198.0
175	7.6	12.5	19.0	23.1	28.5	37.5	67.9	79.2	192.6	6.4	10.8	16.9	21.1	25.9	33.7	61.4	71.2	182.8
225	7.1	11.7	17.7	21.4	26.5	34.9	63.0	73.6	178.5	6.0	10.1	15.7	19.6	24.1	31.5	57.4	66.6	170.1
275	6.7	11.0	16.6	20.1	24.9	32.8	59.3	69.3	167.7	5.7	9.5	14.9	18.5	22.7	29.8	54.2	63.0	160.4
325	6.4	10.5	15.9	19.2	23.8	31.4	56.8	66.4	160.2	5.5	9.1	14.3	17.7	21.8	28.6	52.1	60.5	153.6
375	6.2	10.3	15.5	18.8	23.2	30.7	55.4	64.8	156.2	5.3	8.9	13.9	17.3	21.3	27.9	50.9	59.2	150.0

Table 2.10 - Maximum Critical Volume for 316L Stainless Steel Diaphragm (See Note - page 2.20)

						V	Cmax (10 ⁻² x (cm³) for	Hast	elloy C	Diaphra	agm					
ပ				i	# 0.05m	ım								# 0.1m	m			
Tp (°C)	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	14.0	23.0	35.9	45.0	54.9	70.8	128.0	147.5	379.8	11.5	18.9	30.2	39.0	47.0	59.8	108.2	123.7	336.0
75	13.5	22.1	34.4	43.1	52.6	68.0	122.9	141.8	363.1	11.1	18.3	29.1	37.5	45.2	57.7	104.2	119.5	323.2
125	12.8	21.1	32.7	40.8	49.9	64.6	116.7	134.9	343.3	10.6	17.5	27.8	35.7	43.1	55.2	99.8	114.4	307.8
175	12.2	20.1	31.1	38.6	47.3	61.4	110.7	128.3	324.7	10.1	16.7	26.5	33.9	41.1	52.7	95.4	109.5	293.2
225	11.6	19.1	29.5	36.6	44.8	58.3	105.4	122.0	307.3	9.7	16.0	25.3	32.3	39.2	50.4	91.3	104.8	279.3
275	11.1	18.2	28.1	34.7	42.6	55.5	100.3	116.2	291.2	9.2	15.3	24.2	30.8	37.4	48.2	87.3	100.4	266.3
325	10.6	17.4	26.8	33.0	40.5	52.9	95.6	110.9	276.6	8.8	14.7	23.2	29.4	35.8	46.1	83.7	96.3	254.4
375	10.1	16.7	25.6	31.5	38.7	50.5	91.3	106.1	263.5	8.5	14.1	22.2	28.4	34.3	44.3	80.4	92.6	243.6

Table 2.11 - Maximum Critical Volume for Hastelloy Diaphragm (See Note - page 2.20)

							VCmax	(10 ⁻² x	cm³) fo	or Mon	el Dia	phragr	n					
ပ					# 0.05n	nm								# 0.1m	m			
Tp (°C)	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	10.0	16.5	25.4	31.2	38.3	50.1	90.5	105.1	260.8	8.4	13.9	22.0	27.9	34.0	43.9	79.7	91.8	241.3
75	9.4	15.6	23.8	29.2	35.9	47.0	85.0	98.8	244.0	7.9	13.2	20.8	26.2	32.0	41.5	75.3	86.9	227.2
125	8.8	14.5	22.2	27.1	33.4	43.8	79.1	92.1	226.2	7.4	12.4	19.5	24.5	29.9	38.8	70.6	81.6	212.0
175	8.3	13.7	20.9	25.4	31.4	41.2	74.4	86.7	212.0	7.0	11.7	18.4	23.1	28.2	36.7	66.8	77.3	199.7
225	7.9	13.1	19.9	24.2	29.8	39.2	70.9	82.7	201.7	6.7	11.2	17.6	22.0	27.0	35.1	63.9	74.0	190.7
275	7.7	12.7	19.3	23.4	28.9	38.0	68.7	80.2	195.2	6.5	10.9	17.1	21.3	26.2	34.1	62.1	72.0	185.0
325	7.6	12.5	19.0	23.1	28.5	37.6	67.9	79.2	192.7	6.4	10.8	16.9	21.1	25.9	33.7	61.4	71.2	182.8
375	7.5	12.4	18.8	22.7	28.2	37.2	67.7	78.2	190.0	6.3	10.6	16.7	21.0	25.4	33.0	60.5	70.8	180.5

Table 2.12 - Maximum Critical Volume for Monel Diaphragm (See Note - page 2.20)

						٧	Cmax ((10 ⁻² x c	:m³) for	Tanta	lum Di	iaphra	gm					
<u></u>					# 0.05n	nm								# 0.1m	m			
Tp (°C)	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	8.5	13.9	21.3	25.9	32.0	42.0	75.8	88.3	216.4	7.1	11.9	18.7	23.5	28.7	37.3	67.9	78.5	203.5
75	7.1	11.7	17.8	21.5	26.6	35.0	63.8	74.0	179.4	6.0	10.1	15.8	19.7	24.2	31.6	56.6	66.8	170.9
125	5.6	9.2	13.9	16.8	20.8	27.4	49.6	58.0	139.4	4.8	8.0	12.5	15.5	19.1	25.1	45.8	53.3	134.5
175	4.3	7.2	10.7	12.9	16.0	21.2	38.3	44.9	107.1	3.7	6.3	9.7	12.0	14.8	19.6	35.8	41.8	104.2
225	3.4	5.6	8.4	10.0	12.4	16.5	29.3	35.0	83.1	2.9	4.9	7.6	9.3	11.6	15.3	28.0	32.8	81.3
275	2.8	4.6	6.8	8.1	10.1	13.4	24.3	28.5	67.6	2.4	4.0	6.2	7.6	9.4	12.5	22.9	26.9	66.3
325	2.5	4.1	6.1	7.3	9.1	12.1	21.8	25.6	60.8	2.1	3.6	5.6	6.9	8.5	11.3	20.6	24.2	59.6
375	2.2	3.8	5.7	7.0	8.3	11.2	19.7	22.4	58.7	1.9	3.1	4.8	6.0	7.9	10.7	18.6	22.8	55.8

Table 2.13 - Maximum Critical Volume for Tantalum Diaphragm (See Note - page 2.20)

						٧	Cmax	(10 ⁻² x	cm³) fo	r Titan	ium D	iaphra	agm					
					# 0.05 n	nm								# 0.1m	ım			
Тр (°С)	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	18.2	29.9	47.5	61.0	73.6	93.8	169.5	194.0	519.6	14.7	24.0	38.8	50.9	60.8	76.5	137.8	156.6	438.1
75	16.7	27.4	43.4	55.3	67.0	85.7	154.9	177.7	469.6	13.6	22.2	35.8	46.7	55.9	70.6	127.5	145.1	402.3
125	14.9	24.5	38.5	48.6	59.1	76.0	137.4	158.1	410.9	12.2	20.0	32.1	41.6	50.1	63.6	114.9	131.1	359.1
175	13.3	21.8	34.0	42.5	51.9	67.1	121.3	140.0	358.1	10.9	18.0	28.7	36.9	44.6	56.9	103.0	117.9	319.1
225	11.8	19.4	30.0	37.2	45.6	59.3	107.1	124.0	312.9	9.8	16.1	25.7	32.8	39.8	51.0	92.4	106.1	283.6
275	10.6	17.4	26.8	33.0	40.5	52.9	95.6	110.9	276.8	8.8	14.6	23.1	29.4	35.7	46.1	83.6	96.2	254.3
325	9.7	15.9	24.4	30.0	36.9	48.2	87.2	101.3	250.9	8.1	13.5	21.3	26.9	32.8	42.4	77.0	88.8	232.8
375	9.2	15.1	23.1	28.2	34.8	45.6	82.4	95.8	236.2	7.7	12.8	20.2	25.4	31.1	40.2	73.2	84.5	220.4

Table 2.14 - Maximum Critical Volume for Titanium Diaphragm (See Note - page 2.20)

					\	/Cmax	(10 ⁻² x	cm³) f	or 304L	. Stain	less S	teel D	iaphra	ıgm				
					# 0.05r	nm								# 0.1m	ım			
Tp (C)	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8	Family 0	Family 1	Family 2	Family 3	Family 4	Family 5	Family 6	Family 7	Family 8
-25 to 35	8.1	13.4	20.4	24.9	30.7	40.3	72.9	84.9	207.5	6.9	11.5	18.0	22.6	27.7	36.0	65.6	75.9	195.8
75	7.6	12.5	19.0	23.0	28.4	37.4	67.6	78.9	191.9	6.4	10.7	16.8	21.0	25.8	33.6	61.2	71.0	182.1
125	6.9	11.4	17.3	21.0	25.9	34.2	61.8	72.1	174.7	5.9	9.9	15.4	19.2	23.6	30.9	56.3	65.4	166.8
175	6.4	10.5	15.9	19.2	23.8	31.4	56.8	66.4	160.2	5.5	9.1	14.3	17.7	21.8	28.6	52.1	60.5	153.6
225	5.9	9.8	14.8	17.8	22.1	29.2	52.7	61.6	148.3	5.1	8.5	13.3	16.5	20.3	26.6	48.5	56.5	142.8
275	5.6	9.2	13.9	16.7	20.7	27.2	49.5	58.0	139.2	4.8	8.0	12.5	15.5	19.1	25.1	45.8	53.3	134.4
325	5.3	8.8	13.3	16.0	19.8	26.2	47.4	55.0	133.0	4.6	7.7	12.0	14.8	18.3	24.0	43.9	51.1	128.5
375	5.2	8.6	12.9	15.6	19.3	25.5	46.2	54.0	129.5	4.5	7.5	11.7	14.4	17.8	23.5	42.8	49.9	125.3

Table 2.15 - Maximum Critical Volume for 304L Stainless Steel Diaphragm (See Note - page 2.20)

						,	VCmax	(10 ⁻² x	cm³) fo	or Dup	lex Di	aphra	gm					
					# 0.05r	nm								# 0.1m	ım			
T (၁)	y 0	y 1	ly 2	у 3	y 4	y 5	у 6	y 7	у 8	y 0	y 1	ly 2	у 3	y 4	y 5	y 6	y 7	8 8
	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family
-25 to	16.9	27.7	43.8	55.8	67.5	86.3	156.0	179.0	473.2	13.7	22.5	36.1	47.1	56.4	71.2	128.5	146.2	405.3
35	10.0		.0.0	00.0	01.10	00.0	.00.0									.20.0		.00.0
75	15.9	26.1	41.2	52.2	63.3	81.2	146.8	168.7	442.2	13.0	21.3	34.2	44.4	53.4	67.5	121.9	138.9	382.7
125	14.8	24.4	38.2	48.2	58.6	75.4	136.3	156.8	407.0	12.2	20.0	32.0	41.4	49.8	63.2	114.3	130.4	356.6
175	13.9	22.8	35.6	44.6	54.4	70.2	126.9	146.4	376.3	11.4	18.8	30.0	38.7	46.6	59.2	107.3	122.8	333.4
225	13.1	21.5	33.4	41.7	50.9	65.9	119.1	137.5	350.8	10.8	17.8	28.3	36.4	43.9	56.1	101.6	116.3	313.7
275	12.4	20.4	31.7	39.4	48.2	62.5	112.9	130.5	331.0	10.3	17.0	27.0	34.5	41.8	53.5	97.0	111.2	298.2
315	12.0	19.8	30.6	38.0	46.2	61.1	109.3	126.4	319.5	10.0	16.5	26.2	33.5	40.6	52.0	94.2	108.1	289.1

Table 2.16 - Maximum Critical Volume for Duplex Diaphragm (See Note - page 2.20)

						VCı	nax (10) ⁻² x cm	³) for S	uper I	Duplex	Diapl	hragm					
					# 0.05r	nm								# 0.1m	ım			
م (3°)	0 X	7	ly 2	ر ح	y 4	y 5	9	y 7	8	0 X	7	ly 2	y 3	y	5	9 2	y 7	8
	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family	Family
-25 to 35	18.7	30.7	48.9	62.9	75.8	96.4	174.2	199.3	535.5	15.1	24.7	39.9	52.3	62.5	78.5	141.4	160.5	449.9
75	17.8	29.2	46.3	59.3	71.7	91.4	165.2	189.2	504.5	14.4	23.6	38.0	49.8	59.5	74.9	135.0	153.5	427.9
125	16.8	27.5	43.5	55.3	67.0	85.7	155.0	177.8	469.6	13.6	22.3	35.9	46.8	56.1	70.8	127.7	145.4	402.7
175	15.9	26.0	41.0	51.9	63.0	80.8	146.1	167.8	439.6	12.9	21.2	34.0	44.2	53.1	67.2	121.4	138.3	380.8
225	15.1	24.8	38.9	49.1	59.7	76.8	138.8	159.6	415.3	12.4	20.3	32.5	42.1	50.6	64.3	116.1	132.4	362.8
275	14.5	23.9	37.4	47.0	57.2	73.7	133.3	153.5	397.1	11.9	19.6	31.3	40.5	48.8	62.0	112.1	128.0	349.1
300	14.3	23.5	36.8	46.3	56.3	72.6	131.3	151.2	390.5	11.8	19.4	30.9	39.9	48.1	61.2	110.6	125.6	344.1

Table 2.17 - Maximum Critical Volume for Super Duplex Diaphragm (See Note - page 2.20)

Note - Tables 2.10 to 2.17

The tables 2.10 to 2.17 are Theoretical. For the VcMax values in diaphragm with 0.075 mm of thickness, interpolate the listed values. All the thickness and listed materials are not available. In case of doubt it consults our representatives.

See below the Table 2.18 of Minimum Critical Volume.

				VCm	in (10 ⁻² x	cm³)						
% VCmin Transmitter Range	120%	110%	100%	90%	80%	70%	60%	50%	40%	30%	20%	10%
2	7.02	6.44	5.85	5.27	4.68	4.10	3.51	2.93	2.34	1.76	1.17	0.59
3	7.02	6.44	5.85	5.27	4.68	4.10	3.51	2.93	2.34	1.76	1.17	0.59
4	6.34	5.81	5.28	4.75	4.22	3.70	3.17	2.64	2.11	1.58	1.06	0.53
5	2.75	2.52	2.29	2.06	1.83	1.60	1.37	1.15	0.92	0.69	0.46	0.23
6	3.46	3.17	2.88	2.59	2.30	2.02	1.73	1.44	1.15	0.86	0.58	0.29

Table 2.18 - Minimum Critical Volume

Error Guide Trend for Transmitter Assembled with Remote Seal

There are factors that influence the remote seal response, like process temperature, ambient temperature, seal diameter and capillary length.

To better understand the influence of these parameters, a Total Probable Error behavior guide for the transmitter and the remote seal assembly was devised.

This guide is valid only for the assembly of the Remote Seal SR301T and the Smar pressure transmitter LD30X with the following conditions:

- Stainless Steel # 0.05mm diaphragm;
- Filling Fluid DC200;
- Stability for 12 months;
- Static pressure variation up to 10 bar (only for LD30XD);
- Reference Temperature of 25°C;
- Thermal simmetry for two seals assembly;
- Transmitter Calibration with Rangeability 1:1 for cases 1,2,3.

Therefore, the transmitter calibrations are the following:

```
Range 2:0 to 50 Kpa;
Range 3:0 to 250 Kpa;
Range 4:0 to 2500 Kpa;
Range 5:0 to 25000 Kpa;
Range 6:0 to 40000 Kpa.
```

Transmitter Calibration with Rangeability 10:1 for cases 4,5,6.

Therefore, the transmitter calibrations are the following:

```
Range 2:0 to 5 Kpa;
Range 3:0 to 25 Kpa;
Range 4:0 to 250 Kpa;
Range 5:0 to 2500 Kpa;
Range 6:0 to 4000 Kpa.
```

The Guide is divided in six cases that must be chosen according to the process temperature and ambient temperature. Through these six cases it is possible to observe some factors that influence measuring:

- Ambient and Process Temperature: This is the most important factor and can turn the remote seal use unfeasible. Note that by comparing the six tables (cases 1, 2 and 3; cases 4, 5 and 6), as the temperatures increase, the errors also increase. Cases 3 and 6, where temperatures are higher, present more specifications where the remote seal is not applicable (N.A.).
- Capillary Length: In cases with high temperatures (cases 2 and 3; cases 5 and 6), the shorter the capillary length, the smaller the seal response time and the better the assembly Total Probable Error (TPE).
- Remote Seal Diameter: In cases with high temperatures (cases 2 and 3; cases 5 and 6), the bigger the seal diameter, the better the the assembly Total Probable Error (TPE).

For cases 1 to 6, are:

- N.A.: Nonapplicable by outdatet mechanical limits;
- Error %: TPE lesser or equal to Error % of the calibrated span;
- Δtp: Variation of Temperature in the process;
- Δta: Variation of Temperature in the capillary and pressure transmitter;
- Obs.: For median capillary lengths, use the higher listed value.

Case 1 – TPE % of the Span with Calibration in Rangeability (1:1)

Process Temperature: $40 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta tp = + 15 \, ^{\circ}\text{C}$ Ambient Temperature: $25 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta ta = 0 \, ^{\circ}\text{C}$

				LD30X	(M (2 to 6))				LD30>	(D (2 to 4))	
Capillary	Range			1 Sea	I SR301T					2 Seals S	R301T(equ	ıal)	
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"
	2	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
_	3	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
0.5 m	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
8	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	1.15	0.25%	0.25%	0.25%	0.25%	0.25%	2.20	0.25%	0.25%	0.25%	0.25%	0.25%
_	3	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
1.5 m	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
_	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	2.20	0.25%	0.25%	0.25%	0.25%	0.25%	4.30	0.25%	0.25%	0.25%	0.25%	0.25%
	3	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
3 3	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	3.60	0.25%	0.25%	0.25%	0.25%	0.25%	7.10	0.25%	0.25%	0.25%	0.25%	0.25%
	3	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	1.50	0.25%	0.25%	0.25%	0.25%	0.25%
5 m	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	5.70	0.25%	0.25%	0.25%	0.25%	0.25%	11.27	0.25%	0.25%	0.25%	0.25%	0.25%
	3	1.22	0.25%	0.25%	0.25%	0.25%	0.25%	2.35	0.25%	0.25%	0.25%	0.25%	0.25%
E 8	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	7.10	0.25%	0.25%	0.25%	0.25%	0.25%	14.10	0.25%	0.25%	0.25%	0.25%	0.25%
_	3	1.50	0.25%	0.25%	0.25%	0.25%	0.25%	2.90	0.25%	0.25%	0.25%	0.25%	0.25%
10 m	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.

Table 2.19 - TPE (Case 1)

Case 2 – TPE % of the Span with Calibration in Rangeability (1:1)

Process Temperature: $100 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta tp = + 75 \, ^{\circ}\text{C}$ Ambient Temperature: $40 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta ta = + 15 \, ^{\circ}\text{C}$

				LD30X	M (2 to 6))				LD30>	(D (2 to 4))	
Capillary	Range			1 Sea	SR301T					2 Seals S	R301T(equ	ıal)	
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"
	2	< 1	3.50%	1.00%	1.00%	0.25%	0.25%	< 1	2.00%	0.50%	0.50%	0.25%	0.25%
_	3	< 1	1.00%	0.25%	0.25%	0.25%	0.25%	< 1	0.50%	0.25%	0.25%	0.25%	0.25%
0.5 m	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	< 1	5.00%	1.50%	1.00%	0.50%	0.25%	1.70	3.00%	1.00%	0.50%	0.25%	0.25%
_	3	< 1	1.00%	0.25%	0.25%	0.25%	0.25%	< 1	1.00%	0.25%	0.25%	0.25%	0.25%
1.5 m	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
_	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	1.70	7.00%	1.50%	1.50%	0.50%	0.25%	3.28	4.00%	1.00%	1.00%	0.25%	0.25%
	3	< 1	1.50%	0.50%	0.50%	0.25%	0.25%	< 1	1.00%	0.25%	0.25%	0.25%	0.25%
3 3	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	2.75	N.A.	1.50%	1.50%	0.50%	0.25%	5.40	N.A.	1.50%	1.00%	0.50%	0.25%
_	3	< 1	N.A.	0.50%	0.50%	0.25%	0.25%	1.16	N.A.	0.25%	0.25%	0.25%	0.25%
5 m	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	4.35	N.A.	3.00%	2.50%	1.00%	0.25%	8.57	N.A.	2.00%	1.50%	0.50%	0.50%
_	3	< 1	N.A.	1.00%	0.50%	0.25%	0.25%	1.80	N.A.	0.50%	0.50%	0.25%	0.25%
8 B	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	5.40	N.A.	3.50%	2.50%	1.00%	0.50%	10.68	N.A.	2.00%	1.50%	0.50%	0.25%
_	3	1.16	N.A.	1.00%	0.50%	0.25%	0.25%	2.22	N.A.	0.50%	0.50%	0.25%	0.25%
10 m	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.

Table 2.20 - TPE (Case 2)

Case 3 – TPE % of the Span with Calibration in Rangeability (1:1)

Process Temperature: $170 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta tp = + \, 145 \, ^{\circ}\text{C}$ Ambient Temperature: $60 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta ta = + \, 35 \, ^{\circ}\text{C}$

				LD30>	(M (2 to	6)				LD30	(D (2 to	4)	
Capillary	Range			1 Sea	I SR301	Т				2 Seals S	R301T(e	qual)	
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"
	2	< 1	N.A.	2.00%	2.00%	0.50%	0.50%	< 1	N.A.	1.50%	1.00%	0.50%	0.50%
_	3	< 1	N.A.	0.50%	0.50%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%
0.5 m	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	< 1	N.A.	2.50%	2.00%	0.50%	0.50%	1.29	N.A.	1.50%	1.50%	0.50%	0.25%
_	3	< 1	N.A.	1.00%	0.50%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%
1.5 m	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	1.30	N.A.	3.50%	3.00%	0.50%	0.50%	2.49	N.A.	2.00%	2.00%	0.50%	0.50%
	3	< 1	N.A.	1.00%	1.00%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%
3 3	4	< 1	N.A.	0.25%	0.25%	0.25%	0.25%	< 1	N.A.	0.25%	0.25%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	2.00	N.A.	N.A.	4.00%	1.00%	0.50%	4.08	N.A.	N.A.	2.00%	1.00%	0.50%
_	3	< 1	N.A.	N.A.	1.00%	0.50%	0.25%	< 1	N.A.	N.A.	0.50%	0.25%	0.25%
5 m	4	< 1	N.A.	N.A.	0.25%	0.25%	0.25%	< 1	N.A.	N.A.	0.25%	0.25%	0.25%
	5	< 1	N.A.	N.A.	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	N.A.	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	3.28	N.A.	N.A.	N.A.	1.50%	0.50%	6.45	N.A.	N.A.	N.A.	1.00%	0.50%
_	3	< 1	N.A.	N.A.	N.A.	0.50%	0.25%	1.37	N.A.	N.A.	N.A.	0.25%	0.25%
E 8	4	< 1	N.A.	N.A.	N.A.	0.25%	0.25%	< 1	N.A.	N.A.	N.A.	0.25%	0.25%
	5	< 1	N.A.	N.A.	N.A.	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	N.A.	N.A.	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	4.08	N.A.	N.A.	N.A.	2.00%	0.50%	8.16	N.A.	N.A.	N.A.	1.00%	0.50%
_	3	< 1	N.A.	N.A.	N.A.	0.50%	0.50%	1.70	N.A.	N.A.	N.A.	0.25%	0.25%
10 m	4	< 1	N.A.	N.A.	N.A.	0.25%	0.25%	< 1	N.A.	N.A.	N.A.	0.25%	0.25%
	5	< 1	N.A.	N.A.	N.A.	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	N.A.	N.A.	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.

Table 2.21 - TPE (Case 3)

Case 4 – TPE % of the Span with Calibration in Rangeability (10:1)

Process Temperature: $40 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta tp = + 15 \, ^{\circ}\text{C}$ Ambient Temperature: $25 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta ta = 0 \, ^{\circ}\text{C}$

				LD30X	M (2 to 6)					LD30X	D (2 to 4))	
Capillary	Range			1 Seal	SR301T					2 Seals S	R301T(equ	ıal)	
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"
	2	< 1	2.50%	1.00%	1.00%	0.50%	0.50%	< 1	1.50%	0.50%	0.50%	0.50%	0.25%
_	3	< 1	0.50%	0.25%	0.25%	0.25%	0.25%	< 1	0.50%	0.25%	0.25%	0.25%	0.25%
0.5 m	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
0	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	1.15	2.50%	1.00%	1.00%	0.50%	0.50%	2.20	1.50%	0.50%	0.50%	0.50%	0.25%
_	3	< 1	0.50%	0.25%	0.25%	0.25%	0.25%	< 1	0.50%	0.25%	0.25%	0.25%	0.25%
1.5 m	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
_	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	2.20	2.50%	1.00%	1.00%	0.50%	0.50%	4.30	1.50%	0.50%	0.50%	0.50%	0.25%
	3	< 1	0.50%	0.25%	0.25%	0.25%	0.25%	< 1	0.50%	0.25%	0.25%	0.25%	0.25%
3 m	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	3.60	2.50%	1.00%	1.00%	0.50%	0.50%	7.10	1.50%	0.50%	0.50%	0.50%	0.25%
	3	< 1	0.50%	0.25%	0.25%	0.25%	0.25%	1.50	0.50%	0.25%	0.25%	0.25%	0.25%
5 m	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	5.70	2.50%	1.00%	1.00%	0.50%	0.50%	11.27	1.50%	0.50%	0.50%	0.50%	0.25%
	3	1.22	0.50%	0.25%	0.25%	0.25%	0.25%	2.35	0.50%	0.25%	0.25%	0.25%	0.25%
E 8	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	7.10	2.50%	1.00%	1.00%	0.50%	0.50%	14.10	1.50%	0.50%	0.50%	0.50%	0.25%
_	3	1.50	0.50%	0.25%	0.25%	0.25%	0.25%	2.90	0.50%	0.25%	0.25%	0.25%	0.25%
10 m	4	< 1	0.25%	0.25%	0.25%	0.25%	0.25%	< 1	0.25%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.

Table 2.22 - TPE (Case 4)

Case 5 – TPE % of the Span with Calibration in Rangeability (10:1)

Process Temperature: $100 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta tp = +75 \, ^{\circ}\text{C}$ Ambient Temperature: $40 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta ta = +15 \, ^{\circ}\text{C}$

	Range	LD30XM (2 to 6) 1 Seal SR301T						LD30XD (2 to 4) 2 Seals SR301T(equal)					
Capillary													
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"
0.5 m	2	< 1	N.A.	N.A.	N.A.	3.00%	2.00%	< 1	N.A.	N.A.	N.A.	2.00%	1.50%
	3	< 1	N.A.	2.00%	1.50%	1.00%	0.50%	< 1	N.A.	1.50%	1.00%	0.50%	0.50%
	4	< 1	1.00%	0.50%	0.50%	0.25%	0.25%	< 1	0.50%	0.25%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
1.5 m	2	< 1	N.A.	N.A.	N.A.	3.50%	2.50%	1.70	N.A.	N.A.	N.A.	2.00%	1.50%
	3	< 1	N.A.	2.50%	2.00%	1.00%	0.50%	< 1	N.A.	1.50%	1.00%	0.50%	0.50%
	4	< 1	1.00%	0.50%	0.50%	0.25%	0.25%	< 1	1.00%	0.50%	0.25%	0.25%	0.25%
	5	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
æ	2	1.70	N.A.	N.A.	N.A.	4.00%	2.50%	3.28	N.A.	N.A.	N.A.	2.50%	1.50%
	3	< 1	N.A.	3.00%	2.50%	1.00%	1.00%	< 1	N.A.	2.00%	1.50%	0.50%	0.50%
	4	< 1	1.50%	0.50%	0.50%	0.25%	0.25%	< 1	1.00%	0.50%	0.50%	0.25%	0.25%
	5	< 1	0.50%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	0.25%	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
5 m	2	2.75	N.A.	N.A.	N.A.	5.00%	3.00%	5.40	N.A.	N.A.	N.A.	N.A.	1.50%
	3	< 1	N.A.	4.00%	3.50%	1.00%	1.00%	1.16	N.A.	2.50%	2.00%	1.00%	0.50%
	4	< 1	N.A.	0.50%	0.50%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
E &	2	4.35	N.A.	N.A.	N.A.	6.00%	3.00%	8.57	N.A.	N.A.	N.A.	N.A.	2.00%
	3	< 1	N.A.	6.00%	4.50%	1.50%	1.00%	1.80	N.A.	3.50%	2.50%	1.00%	0.50%
	4	< 1	N.A.	1.00%	0.50%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
10 m	2	5.40	N.A.	N.A.	N.A.	7.00%	3.50%	10.68	N.A.	N.A.	N.A.	N.A.	2.00%
	3	1.16	N.A.	7.00%	5.00%	1.50%	1.00%	2.22	N.A.	4.00%	3.00%	1.00%	0.50%
	4	< 1	N.A.	1.00%	1.00%	0.25%	0.25%	< 1	N.A.	0.50%	0.50%	0.25%	0.25%
	5	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.25%	0.25%	0.25%	0.25%		N.A.	N.A.	N.A.	N.A.	N.A.

Table 2.23 - TPE (Case 5)

Case 6 – TPE % of the Span with Calibration in Rangeability (10:1)

Process Temperature: $170 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta tp = + \, 145 \, ^{\circ}\text{C}$ Ambient Temperature: $60 \, ^{\circ}\text{C} \pm 0 \, ^{\circ}\text{C} \rightarrow \Delta ta = + \, 35 \, ^{\circ}\text{C}$

				LD30>	(M (2 to	6)			LD30XD (2 to 4)				
Capillary	Range			1 Sea	I SR301	Т		2 Seals SR301T(equal)					
		Tr (s)	1"	1.1/2"	2"	3"	4"	Tr (s)	1"	1.1/2"	2"	3"	4"
	2	< 1	N.A.	N.A.	N.A.	N.A.	4.00%	< 1	N.A.	N.A.	N.A.	4.00%	2.50%
_	3	< 1	N.A.	4.00%	3.00%	1.50%	1.00%	< 1	N.A.	2.50%	2.00%	1.00%	1.00%
0.5 m	4	< 1	N.A.	1.00%	1.00%	0.50%	0.50%	< 1	N.A.	1.00%	1.00%	0.50%	0.50%
	5	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	< 1	N.A.	N.A.	N.A.	N.A.	4.50%	1.29	N.A.	N.A.	N.A.	4.50%	2.50%
_	3	< 1	N.A.	5.00%	4.00%	1.50%	1.00%	< 1	N.A.	3.00%	2.50%	1.00%	1.00%
1.5 m	4	< 1	N.A.	1.00%	1.00%	1.00%	0.50%	< 1	N.A.	1.00%	1.00%	0.50%	0.50%
_	5	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	1.30	N.A.	N.A.	N.A.	N.A.	5.00%	2.49	N.A.	N.A.	N.A.	5.00%	3.00%
	3	< 1	N.A.	7.00%	5.50%	2.00%	1.00%	< 1	N.A.	4.00%	3.00%	1.50%	1.00%
3 B	4	< 1	N.A.	1.00%	1.00%	1.00%	0.50%	< 1	N.A.	1.00%	1.00%	0.50%	0.50%
	5	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	0.50%	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	2.00	N.A.	N.A.	N.A.	N.A.	5.50%	4.08	N.A.	N.A.	N.A.	6.00%	3.00%
	3	< 1	N.A.	N.A.	7.00%	2.50%	1.50%	< 1	N.A.	N.A.	5.00%	1.50%	1.00%
5 m	4	< 1	N.A.	N.A.	1.00%	1.00%	0.50%	< 1	N.A.	N.A.	1.00%	0.50%	0.50%
	5	< 1	N.A.	N.A.	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	N.A.	0.50%	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	3.28	N.A.	N.A.	N.A.	N.A.	6.00%	6.45	N.A.	N.A.	N.A.	8.00%	3.50%
	3	< 1	N.A.	N.A.	N.A.	3.00%	1.50%	1.37	N.A.	N.A.	N.A.	2.00%	1.00%
E 8	4	< 1	N.A.	N.A.	N.A.	1.00%	0.50%	< 1	N.A.	N.A.	N.A.	0.50%	0.50%
	5	< 1	N.A.	N.A.	N.A.	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	N.A.	N.A.	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	2	4.08	N.A.	N.A.	N.A.	N.A.	7.00%	8.16	N.A.	N.A.	N.A.	N.A.	4.00%
_	3	< 1	N.A.	N.A.	N.A.	3.50%	1.50%	1.70	N.A.	N.A.	N.A.	2.00%	1.00%
10 m	4	< 1	N.A.	N.A.	N.A.	1.00%	0.50%	< 1	N.A.	N.A.	N.A.	0.50%	0.50%
	5	< 1	N.A.	N.A.	N.A.	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.
	6	< 1	N.A.	N.A.	N.A.	0.50%	0.50%		N.A.	N.A.	N.A.	N.A.	N.A.

Table 2.24 – TPE (Case 6)

OPERATION

Operation of the Remote Seal Sensor

In the remote seal transmitter, the remote insulator diaphragm plus transmission capillary set is connected to the transmitter chamber.

The internal spaces of the capillary pipe diaphragm and the sensor chamber are filled with the application proper fluid, according to the pressure and the of the process operation temperature.

The process pressure displaces the insulator diaphragm of the seal causing the filling fluid to transmit through the capillary the pressure to the sensor, generating a difference of capacitance between the sensor diaphragm and each plate on the capacitive cell. This differential capacitance is electrically converted into a signal of 4 to 20 mA transmitted by the two-wire system.

Operation Start Up

To start operating the remote seal transmitter see the Transmitter Operation and Maintenance Instructions Manual.

The transmitter is supplied in compliance with the data list and calibrated according to the range requested by the client.

Should you need to change the range (see the Transmitter Operation Manual) make new calculations and adjust the transmitter in accordance with these calculations.

The output signal adjustment on zero, in accordance with the "Test and Output Signal Adjustment" item is available on any transmitter, except to the absolute pressure transmitter.

Calibration

Output Signal Test and Setting

While testing and adjusting the transmitter, the ambient temperature should not change.

It is possible to test and to adjust the output signal without disassembling the remote seal for a pressure value (Px) known, if this remains constant.

Adjust the corresponding pressure at the beginning of the range for value (Pi), and similarly adjust the pressure on the end of the range (Ps). See Figures 3.1 or to 3.2 according to the type of curve (ascendant or descendant).

To determine the "Ix" current value when the current curve in terms of the ascendant (Figure 3.1) or descendant pressure (Figure 3.2), use the equation 3.1 below.

$$Ix = 4 + 16 \cdot \frac{Px - Pi}{Ps - Pi} \tag{3.1}$$

Figure 3.1 – Ascendant Curve of the Ix Output Signal in Terms of the Pressure

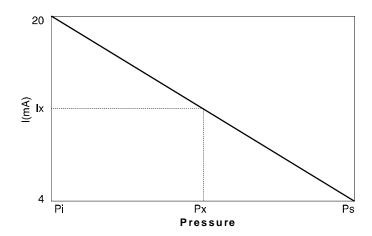


Figure 3. 2 - Descendant Curve of the lx Output Signal in Terms of the Pressure (Reverse Mode)

If the seal needs a final adjustment, bring it to a laboratory and do the following:

- Put the pressure generator with adapter to the leaking test, in the side (H) of the seal and keep the low side (L) in the same height as the high side, leaving it opens to the atmosphere. If the beginning of the range is below the atmospheric pressure, simulate the depression setting an equivalent pressure value in the low side of the seal (this requires special equipments for vacuum calibration). In this case the high side will be submitted to the atmospheric pressure.
- · Always maintain the two seals on the same height.
- Compensate the hydrostatic pressure of the capillary filling fluid in accordance with the seal assembling. See the calculation of the Pf pressure according to the "Influence of Filling Fluids on the Capillaries" item.

Range Beginning Change

This change is possible only for the transmitters installed on field when there is an input signal that corresponds to the range start with due accuracy. Otherwise, disassemble the transmitter, remove it to the laboratory and make the change in accordance with the "Span Change" item.

Make the adjustments in accordance with the transmitter operation manual.

Span Change on Differential and Flow Pressure Transmitters

In general, this work can be done only at the laboratory and with the two seals on the same height.

- Apply on the (H) side the pressure you want to calibrate.
- Make the adjustments according to the transmitter operation manual.

Level Transmitter Span Change

Proceed as for differential and flow transmitters. The span is given in Table 3.1.

OUTPUT	ZERO	SPAN
Ascendant	Pi = Hi . δp	Ps = Hs . δp
Descendant	Pi = Hs . δp	Ps = Hi . δp

Table 3.1 - Ascendant and Descendant Curves Span

Where:

Hs = Maximum level measured

Hi = Minimum level measured

 δp = Density of the process fluid

Capillaries Filling Fluid Effect

The effect of the hydrostatic pressure of the capillary filling fluid must be compensated during measuring (see item Calibration).

The hydrostatic pressure is given by:

$$Pf = Hv . \delta e$$
 (3.2)

Where:

Pf = Hydrostatic Pressure

Hv = Level Difference between the two seals

 δe = Density of the Filling Fluid (see Table 2.6)

The Hv distance between the two seals is limited by the capillary length and the maximum H1 difference allowed between the transmitter and the seal. See the "Mounting of Transmitter with Remote Seal" – Chapter 1.

MAINTENANCE

Before working with transmitter verifies the characteristics of the fill fluid in the piping and observes all safety standards.

Remote Seal Cleaning

The interval between the cleaning of the seals depends on the service conditions and the chemical and physical characteristics of the materials. This period of time depends on the concentration of dirt incrustations in the seal and in the tap that connects the seal to the main piping or tank.

When it is necessary to clean the seal and this piping, be careful not to damage it, because it is very delicate. If there are incrustations it can cause damages when disassembling the diaphragm, such as hardened bitumen between the diaphragm and the flange of the tank. To prevent this, this incrustation must be eliminated through the heating of this section of the piping or by using solvent before disassembling. Use a paintbrush to remove it.

Disassembling and Packing the Remote Seal Transmitter

Instructions:

- a) Disable the transmitter;
- b) Switch off the power supply;
- c) Remove the counterflange seal;
- d) Clean the seal carefully because the diaphragm is very delicate;
- e) Set the protection cover over the diaphragm and fix it with adhesive tape;
- f) Release the transmitter:
- g) Roll the capillary without twisting it, leaving a 150mm or greater radius;
- h) Do not loose the sealed bolts:
- i) The transmitter package must protect it from mechanical shocks and must be like the original (See Figure 4.1) when returning materials.

Figure 4.1- Remote Seal Package

Component Replacement

The seal, the capillary and the cell form an only set in which is sealed the fill fluid. For eventual replacements the set must be considered.

Return of Materials

If it becomes necessary to return the transmitter and/or configurator to Smar, simply contact our office, informing the defective instrument's serial number, and return it to our factory. In order to speed up analysis and solution of the problem, the defective item should be returned with the Service Request Form (SRF – Appendix A) properly filled with a description of the failure observed and with as much details as possible. Other information concerning to the instrument operation, such as service and process conditions, is also helpful.

Remote Seal Spare Parts

			SPARE PART	rings	R301S (SANITAR	Y)	ı					
	CONNECTIONS WITH EXTENSION DN-25		BUNA N VITON TEFLON			TANK ADAPTOR	TRI-CLAMP					
1"			400-0460	400-0461	400-0462	400-0496	N.D.					
-	EXTENSION	TC	100 0 100	100 0 10 1	100 0 102	100 0170	400-0491					
			400-0470	400-0471	400-0472	400-0500						
	WITHOUT EXTENSION	TC [HP]					400-0492					
1.1/2"		SMS	400-0467	400-0468	400-0469	400-0499	N.D.					
		DN40	400-0464	400-0465	400-0466	400-0498	N.D.					
	WITH EXTENSION	DN40	201-0125	201-130	400-0463	400-0497	N.D.					
		TC	400-0482	400-0483	400-0484	201-0150	201-0155					
		TC [HP]	400-0402	400-0403	400-0484	201-0130	400-0493					
	WITHOUT	SMS	400-0473	400-0474	400-0475	201-0145	N.D.					
	EXTENSION						RJT	400-0476	400-0477	400-0478	201-0140	N.D.
		IDF	400-0479	400-0480	400-0481	201-0135	N.D.					
		DN50	400-0876	400-0877	400-0878	400-0872	N.D.					
2"		TC					201-0155					
		TC [HP]	201-0125	201-0130		400-0262	400-0493					
	WITH	SMS				400-0261	N.D.					
	EXTENSION	RJT			400-0463	400-0260	N.D.					
		IDF				400-0259	N.D.					
		DN50				400-0873	N.D.					
		TC					400-0494					
	WITHOUT EXTENSION	TC [HP]	400-0488	400-0489	400-0490	400-0501	400-0495					
		DN80	400-0879	400-0880	400-0881	400-0874	N.D.					
		TC					400-0494					
3"		TC [HP]				400-0326	400-0495					
		SMS			400-0487	400-0329	N.D.					
	WITH EXTENSION	RJT	400-0485	400-0486		400-0328	N.D.					
		IDF				400-0327	N.D.					
		DN80				400-0875	N.D.					

Table 4.1 - Spare Parts LD300S / SR301S

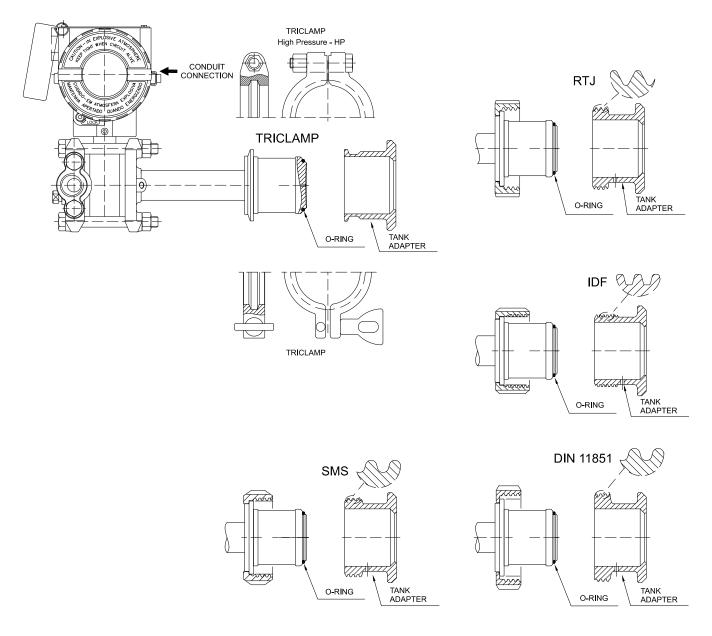


Figure 4.2 – Exploded View of LD300S with Extension

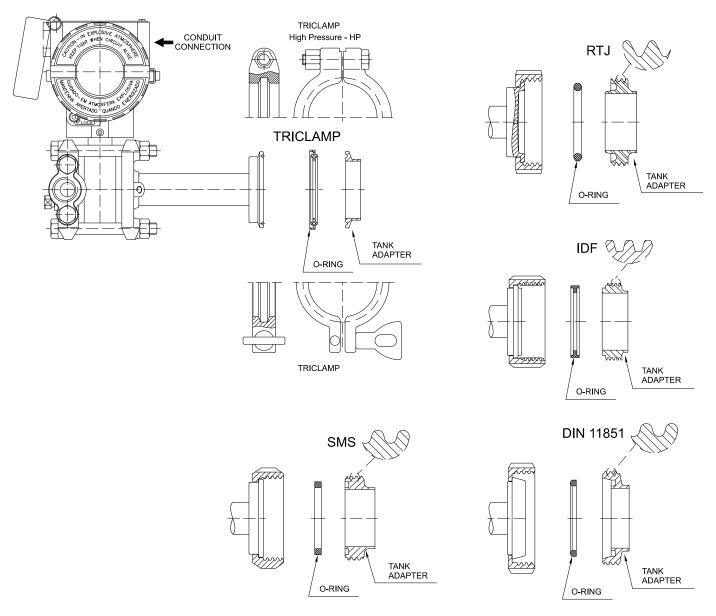


Figure 4.3 – Exploded View of LD300S without Extension

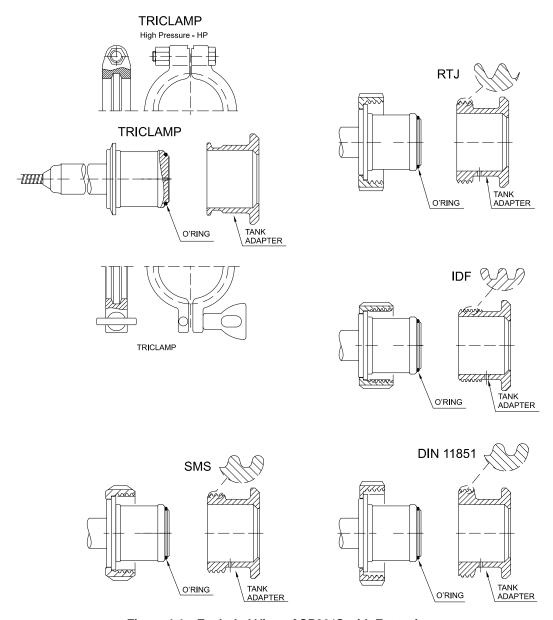


Figure 4.4 – Exploded View of SR301S with Extension

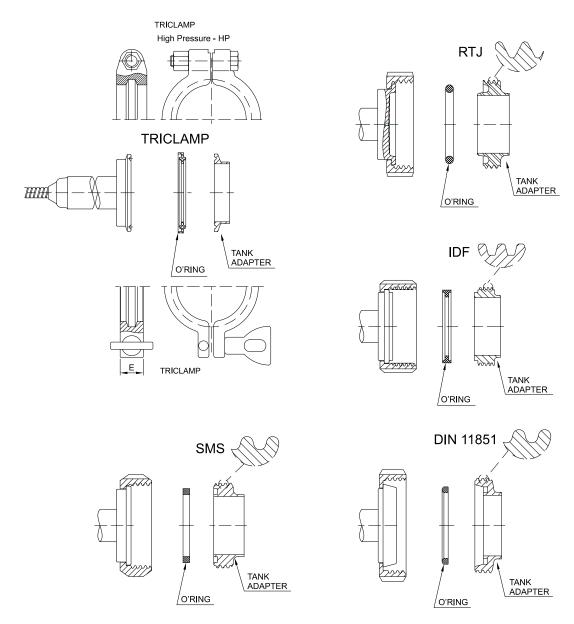


Figure 4.5 – Exploded View of SR301S without Extension

SPARE PARTS: LD300L / SR301T / SR301P							
ØN	GROUP	NORM		GASKET		DRAIN VALVE	
ØN	GROUP	NORW	TEFLON	COPPER	GRAFOIL	STAINLESS STEEL 316L	
1"	ALL		400-0425	400-0426	400-0427		
1.1/2"	ALL	16.5	400-0428	400-0429	400-0430		
2"	ALL	ANSI-B16.5	400-0431	400-0432	400-0433		
3"	ALL	ANS	400-0434	400-0435	400-0436		
4"	ALL		400-0437	400-0438	400-0439	400-0792	
DN25	ALL	5	400-0440	400-0441	400-0442	400-0732	
DN40	ALL	1092-1/2501	400-0443	400-0444	400-0445		
DN50	ALL	92-1	400-0446	400-0447	400-0448		
DN80	ALL	9	400-0449	400-0450	400-0451		
DN100	ALL	Ш	400-0452	400-0453	400-0454		

Table 4.2 - LD300L / SR301T / SR301P Spare Parts

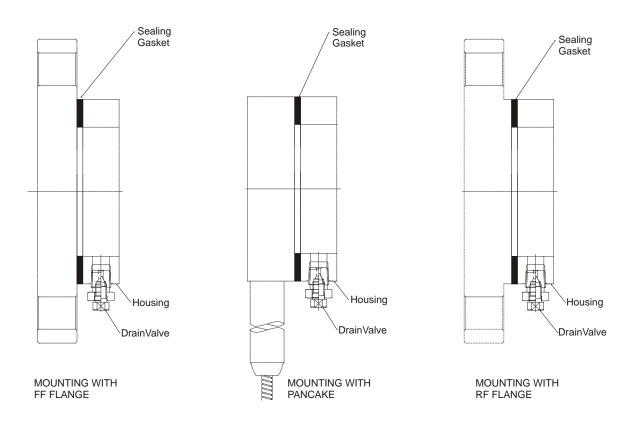


Figure 4.6 – Exploded View - Mounting with Gasket and Drain Valve

	RTJ SPARE PARTS: LD300L (without Extension) / SR301T / SR301E							
ØN	GROUP	NORM	RING	METALLIC RING	DRAIN VALVE			
NO C	GROOF	NORW	KING	STAINLESS STEEL 316L	STAINLESS STEEL 316L			
	150		R15	400-0887				
	300		R16	400-0888				
1"	600		R16	400-0888				
	1500		R16	400-0888				
	2500		R18	400-0889				
	150		R19	400-0890				
	300		R20	400-0891				
1.1/2"	600		R20	400-0891				
	1500	ANSI B 16.20 RTJ	R20	400-0891				
	2500		R23	400-0893	400.0700			
	150		R22	400-0892	400-0792			
	300		R23	400-0893	1			
2"	600		R23	400-0893				
	1500		R24	400-0894	1			
	2500		R26	400-0895				
	150		R29	400-0896				
3"	300		R31	400-0897	_			
	600		R31	400-0897				
	150		R36	400-0900				
4"	300		R37	400-0901	_			
	600		R37	400-0901				

Table 4.3 – LD300L (without) / SR301T / SR301E Spare Parts

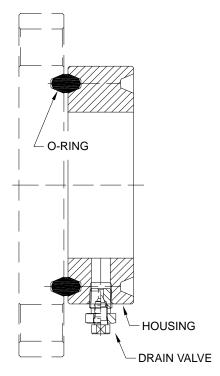


Figure 4.7 – Exploded View of LD300L (without extension) SR301T / SR301E

SR301R SPARE PARTS						
NPT THREAD	SEAI	DRAIN VALVE				
	TEFLON	COPPER	GRAFOIL	STAINLESS STEEL 316L		
1/4"	201-0120	400-0458	400-0459			
3/8"						
1/2"				400-0792		
3/4"	201-0120	400-0430	400-0439	400-07 92		
1"						
1.1/2"						

Table 4.4 – SR301R Spare Parts

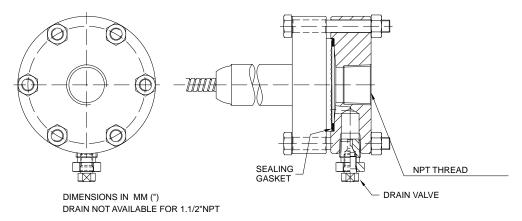


Figure 4.8 - SR301R Exploded View

	INSULATOR KIT SPARE PARTS: LD300L / SR301T / SR301E						
ØNI	ØN GROUP NORM		MODELS WITHOUT EXTENSION	MODELS WITH EXTENSION			
ØΝ			LD300L / SR301T	LD300L / SR301E			
	150		400-0861-11X01	400-0861-11X11			
1"	300		400-0861-12X01	400-0861-12X11			
	600		400-0861-13X01	400-0861-13X11			
	150		400-0861-21X01	400-0861-21X11			
1.1/2"	300		400-0861-22X01	400-0861-22X11			
	600		400-0861-23X01	400-0861-23X11			
	150	ANSI B 16.5	400-0861-31X01	400-0861-31X11			
2"	300	9 B	400-0861-32X01	400-0861-32X11			
	600	ANS	400-0861-33X01	400-0861-33X11			
	150		400-0861-41X01	400-0861-41X11			
3"	300		400-0861-42X01	400-0861-42X11			
	600		400-0861-43X01	400-0861-43X11			
	150		400-0861-51X01	400-0861-51X11			
4"	300		400-0861-52X01	400-0861-52X11			
	600		400-0861-53X01	400-0861-53X11			
DN25	PN10/40		400-0861-64X01	400-0861-64X11			
DN40	PN10/40	32-1	400-0861-74X01	400-0861-74X11			
DN50	PN10/40	4108	400-0861-84X01	400-0861-84X11			
DN80	PN10/40	DIN EN1092-1	400-0861-94X01	400-0861-94X11			
DN100	PN16	ੂ	400-0861-A8X01	400-0861-A8X11			
	PN40		400-0861-A4X01	400-0861-A4X11			
40A	20K		400-0861-B6X01	400-0861-B6X11			
50A	10K	22	400-0861-C5X01	400-0861-C5X11			
	40K	\$ 2202	400-0861-C7X01	400-0861-C7X11			
80A	10K	JIS B	400-0861-D5X01	400-0861-D5X11			
	20K	7	400-0861-D6X01	400-0861-D6X11			
100A	10K		400-0861-E5X01	400-0861-E5X11			

OBS.: X – Option for Flange Face Type. Where: 0 – RF Flange Face (RF Face Flange) / 1 – FF Flange Face (Flat Face). This Kit is composed by: Nonconductive Sealing Gasket, Isolating Bolt Bush, Nonconductive Washer and Compression Washer.

Table 4.5 - LD300L / SR301T / SR301E Insulator Kit Spare Parts

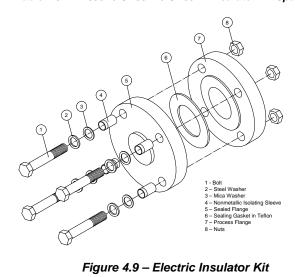


Figure 4.9 - Electric Insulator Kit

	INSULATOR KIT SPARE PARTS: SR301P / SR301Q						
ØN	GROUP	NORM	MODEL WITHOUT EXTENSION	MODEL WITH EXTENSION			
ØN	GROOF	NOKW	SR301P	SR301Q			
1.1/2"	ALL	5:	400-1068-101	400-1068-111			
2"	ALL	B 16.5	400-1068-201	400-1068-211			
3"	ALL	ANSII	400-1068-301	400-1068-311			
4"	ALL	₹	400-1068-401	400-1068-411			
DN40	ALL	2-1	400-1068-501	400-1068-511			
DN50	ALL	DIN EN1092-1	400-1068-601	400-1068-611			
DN80	ALL	Z Z	400-1068-701	400-1068-711			
DN100	ALL		400-1068-801	400-1068-811			
40A	20K		400-1068-901	400-1068-911			
50A	10K	_	400-1068-A01	400-1068-A11			
30A	40K	2201	400-1068-A01	400-1068-A11			
80A	10K	a B B	400-1068-B01	400-1068-B11			
00/	20K	٦	400-1068-B01	400-1068-B11			
100A	10K		400-1068-C01	400-1068-C11			

OBS.: This kit is composed by two nonconductive sealing gaskets.

Table 4.6 – Insulator Kit Spare Parts SR301P / SR301Q

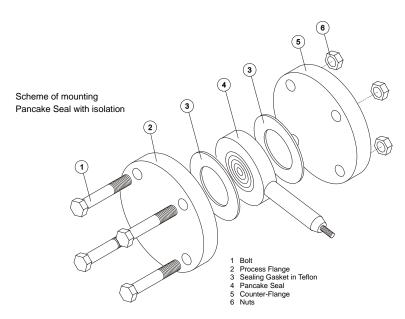


Figure 4.10 - SR301P and SR301Q Electric Insulator Kit

EXAMPLES

NOTE

For the examples on this Chapter, consider the calibrated seal at temperature of 25°C.

Example 1

Considering a Two-Seal Transmitter.

A – TRANSMITTER DATA	RESPONSE
Type of Transmitter (Absolute, Gauge, Differential)	Differential
2. Range Superior Value / (V.sup.) (mmH2O @ 4 °C)	2400
3. Range Inferior Value / (V. inf.) (mmH2O @ 4 °C)	-1000
4. Transmitter Calibration (mmH2O @ 4 °C)	3400
5. Transmitter Range (2,3,4,5)	2
6. Diaphragm Material/Fill Oil	316 SST/Sillicone
7. Maximum Ambient Temperature T Max. (°C)	60
8. Minimum Ambient Temperature T Min. (°C)	-15
9. Static Pressure Variation (Bar)	3
10. Pressure Transmitter Error to T Max. (Calibration percent)	0.175
11. Pressure Transmitter Error to T Min. (Calibration percent)	0.195
12. Transmitter Accuracy (Transmitter Calibration percent)	0.075
13. Stability/Time (Transmitter Calibration percent / months)	0.225 / 60
14. Transmitter Response Time (seconds)	0.1

Table 5.1 – Transmitter Data (Example 1)

B – SEAL/LEVEL DATA	RESPONSE
1. Type of Connection (One Seal, Two Seals, One Level, Level/Seal)	Two Seals
2. Capillary Filling Fluid (Table 2.4)	Dc 200
3. Geometric Symmetry (Symmetric, Assymetric)	Assymetric
4. Thermic Symmetry (Symmetric, Assymetric)	Assymetric
5. Diaphragm Material (Steel, Hasteloy, Monel, Titanium, Tantalum and other)	Steel
6. Diaphragm Thickness	0.05 mm
B.1 – H Side	
1. H Side Model (SR301T, SR301E, SR301R, SR301S, SR301P, SR301Q, LD30XL, LD30XS)	SR301E
2. Side H Diameter Seal (N Inch, DN (mm))	3 Pol.
3. H Side Diaphragm Family (Table 2.5)	7
4. Diaphragm Reservoir Volume – Vrdf (cm3) (Table 2.6)	105.6E-2
5. H Side Capillary Length (meters)	2.5
6. H Side Extension Length (meters)	0.10
B.2 – L Side	
1. L Side Model (SR301T, SR301E, SR301R, SR301S, SR301P, SR301Q, LD30XL, LD30XS)	SR301E
2. Side L Diameter Seal (N Inch, DN (mm))	3 Pol.
3. L Side Diaphragm Family (Table 2.5)	7
4. Diaphragm Reservoir Volume – Vrdf (cm3) (Table 2.6)	105.6E-2
5. L Side Capillary Length (meters, N.A Non Applicable)	4.5
6. L Side Extension Length (meters)	0.10
Table 5.0 Level/Deal Bate (Francis 4)	

Table 5.2 – Level/Seal Data (Example 1)

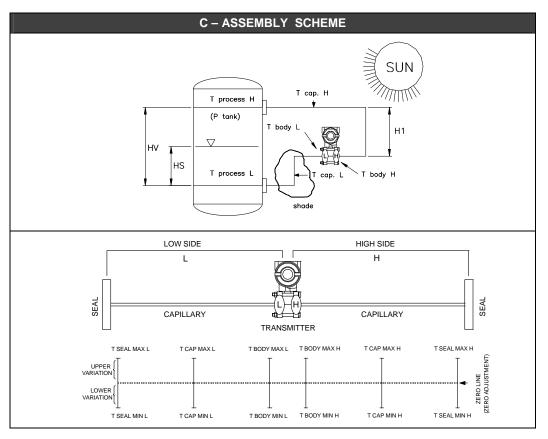


Table 5.3 – Assembly Scheme (Example 1)

D – PROCESS DATA	RESPONSE
D.1 – H Side	
1. T seal max H – Maximum Temperature in the H Side Seal (°C)	70
2. T seal min H – Minimum Temperature in the H Side Seal (°C)	60
3. T cap max H – Maximum Temperature in the H Side Capillary (°C)	60
4. T cap min H – Minimum Temperature in the H Side Capillary (°C)	-15
5. T body max H – Maximum Temperature in the H Side Body (°C)	60
6. T body min H – Minimum Temperature in the H Side Body (°C)	-15
D.2 – L Side	
1. T seal max L – Maximum Temperature in the Side Seal (°C)	120
2. T seal min L – Minimum Temperature in the L Side Seal (°C)	80
3. T cap max L – Maximum Temperature in the L Side Capillary (°C)	35
4. T cap min L – Minimum Temperature in the L Side Capillary (°C)	-5
5. T body max L – Maximum Temperature in the L Side Body (°C)	60
6. T body min L – Minimum Temperature in the L Side Body (°C)	-15
D.3 – Pressure	
1. Maximum Process Pressure (bar abs.)	5
2. Minimum Process Pressure (bar abs.)	2

Table 5.4 – Process Data (Example 1)

E – USER EXPECTANCY	RESPONSE
1. Global Error Requested by User (% Transmitter Calibration)	0.5%
2. Response Time Requested by the Mesh Control (seconds)	10

Table 5.5 – User Expectancy (Example 1)

Error Calculation by Temperature

Have:

10 - "Upper Variation of Temperature"

Seal H Side

$$\Delta T_{seal} = (70 - 25) = 45 \,{}^{\circ}C$$

$$\Delta T_{cap} = (60 - 25) = 35^{\circ} C$$

$$\Delta T_{body} = (60 - 25) = 35 \,{}^{\circ}C$$

Using the formulas on Chapter 2, item 2 we have:

$$\Delta V_{rdf} = 0.0508 \, cm^3$$

$$\Delta V_{ext} = 0.0049 \ cm^3$$

$$\Delta V_{cap} = 0.0843 \ cm^3$$

$$\Delta V_{body} = 0.0432 \ cm^3$$

$$V_{total} = \Delta V_{total} = 0.1823 \ cm^3$$

Entering this value in Figure 2.6, we have:

$$Error = Error (Graphic). Fm$$

$$E_H = +25.9080 \, mmH_2O$$

NOTE

If the diaphragm is equal to 0.1mm, enter with this value V_{total} on Figure 2.8 E_H = + 71.8080 mmH₂O.

Seal L Side

$$\Delta T_{seal} = (120 - 25) = 95 \,{}^{\circ}C$$

$$\Delta T_{cap} = (35 - 25) = 10^{\circ} C$$

$$\Delta T_{body} = (60 - 25) = 35 \,{}^{\circ}C$$

Using the formulas on Chapter 2, item 2 have:

$$\Delta V_{rdf} = 0.1073 \, cm^3$$

$$\Delta V_{ext} = 0.0104 \ cm^3$$

$$\Delta V_{cap} = 0.0433 \ cm^3$$

$$\Delta V_{body} = 0.0432 \ cm^3$$

$$V_{total} = \Delta V_{total} = 0.2042 \ cm^3$$

Enter this value on Figure 2.6, have:

$$E_L = +28.9000 \, mmH_2O$$

NOTE

If the diaphragm is equal to 0.1mm enter this value V_{total} on Figure 2.8, $E_L = + 80.2060 \text{ mmH}_2\text{O}$.

20 - "Temperature Lower Variation"

Seal H Side

$$\Delta T_{seal} = (60 - 25) = 35 \,^{\circ} C$$

 $\Delta T_{cap} = (-15 - 25) = -40 \,^{\circ} C$
 $\Delta T_{body} = (-15 - 25) = -40 \,^{\circ} C$

Using the formulas on Chapter 2, item 2 we have:

$$\begin{split} \Delta V_{rdf} &= 0.0395 \ cm^3 \\ \Delta V_{ext} &= 0.0038 \ cm^3 \\ \Delta V_{cap} &= -0.0963 \ cm^3 \\ \Delta V_{body} &= -0.0494 \ cm^3 \\ V_{total} &= \Delta V_{total} = -0.1024 \ cm^3 \end{split}$$

Enter this value in the Figure 2.6, we have:

$$E_{H} = -14.4160 \, mmH_{2}O$$

Enter this value in the Figure 2.8 it is not possible to find the Value for negative Error because there is a contraction in the diaphragm.

ATTENTION

The logarithmic graphs do not indicate negative errors. To resolve this problem and considering that the error is symmetrical, the V_{total} must be calculated, inverting the signals of the seal volume variation, of the extension and capillary and to add the negative signal to error: From Equations 2.8 and 2.9:

$$V_{Total} = \Delta V_{rdf} + \Delta V_{ext} + \Delta V_{cap} + \Delta V_{body}$$

$$V_{total} = (-0.0395) + (-0.0038) + (+0.0963) + (+0.0494) = 0.1024 \text{ cm}^3$$

To enter this value in the Figure 2.6, obtain the Symmetric Error $E_H = +14.4160 \ mmH_2O$

Inverting the signal: $E_H = -14.4160 \ mmH_2O$

If the lamina equal 0.1mm enter with this value V_{total} in the Figure 2.8

$$E_H = +39.8820 \, mmH_2O$$
.

Inverting the signal: $E_H = -39.8820 \ mmH_2O$

Seal L Side

$$\Delta T_{seal} = (80 - 25) = 55 \,^{\circ} C$$

$$\Delta T_{cap} = (-5 - 25) = -30 \,^{\circ} C$$

$$\Delta T_{hody} = (-15 - 25) = -40 \,^{\circ} C$$

Using the formulas from Chapter 2, item 2:

$$\Delta V_{rdf} = 0.0620 \ cm^3$$
 $\Delta V_{ext} = 0.0060 \ cm^3$
 $\Delta V_{cap} = -0.1300 \ cm^3$
 $\Delta V_{body} = -0.0494 \ cm^3$
 $V_{total} = \Delta V_{total} = -0.1113 \ cm^3$

Enter this value on Figure 2.6, have:

$$E_L = -15.7080 \ mmH_2O$$

Entering this value on Figure 2.8 it is not possible to find the Value for negative Error because there is a contraction in the diaphragm.

ATTENTION

The logarithmic graphs do not show negative errors. To solve this problem and considering that the error is symmetrical, the V_{total} must be calculated, by inverting the seal volume, the extension and the capillary variation signals and by adding the negative signal to the error, namely From Equations 2.8 and 2.9:

$$\begin{split} V_{Total} &= \Delta V_{rdf} + \Delta V_{ext} + \Delta V_{cap} + \Delta V_{body} \\ V_{total} &= (-0.062) + (-0.0060) + (+0.1300) + (+0.0494) = 0.1113 cm^3 \end{split}$$

By entering this value on Figure 2.6, one has the Symmetric Error $E_L = +15.7080 \ mmH_2O$

Inverting the signal: $E_L = -15.7080 \text{ } mmH_2O$

If the diaphragm is equal to 0.1mm, enter with this value V_{total} on Figure 2.8

$$E_L = +43.3840 \ mmH_2O$$

Inverting the signal: $E_{\it L} = -43.3840~mmH_{\it 2}O$

Calculation of Seal/Level Error

To calculate the Seals Error, verify the cases of symmetry. In this case, there is a Geometric Asymmetry and a Thermal Asymmetry, and therefore the Equation 2.13 on Chapter 2 must be used.

$$Es = \sqrt{\left(E_H\right)^2 + \left(E_L\right)^2}$$

1º - "Upper Temperature Variation"

$$Es1 = \sqrt{(25.9080)^2 + (28.9000)^2}$$

$$Es1 = 38.8128 \text{ mmH}_2\text{O}$$

2º - "Lower Temperature Variation"

$$Es2 = \sqrt{(-14.4160)^2 + (-15.7080)^2}$$

$$Es2 = 21.3205 \text{ mmH}_2\text{O}$$

Calculation of the Transmitter Accuracy with Seal/Level

NOTE

The transmitter accuracy is not significantly altered by the addition of seal/level. However, the measuring error resulting from the combination suffers significant increase due to physical and geometric parameters, in terms of temperature variation.

$$Accuracy = \frac{0.075}{100} \cdot 3400 = 2.55 \text{ mmH}_2\text{O} \qquad \text{(See Transmitter's Manual)}$$

Calculation of the Global Error of Transmitter Assembling with Seals/Level

From Equation 2.14 the global error of the remote seal must be calculated:

$$E_{TpT \max} = \frac{0.175}{100} \cdot 3400 = 5.9500 \ mmH_2O$$

$$E_{TpT \, \text{min}} = \frac{0.195}{100} \cdot 3400 = 6.6300 \, mmH_2O$$

$$E_{globaloTMax} = \sqrt{E_s^2 + E_T^2} = \sqrt{38.8128^2 + 5.9500^2}$$

$$E_{globalpTMax} = 39.2662 mm H_2 O$$

$$E_{\it globalpTMax} = \! 1.155\% \; \; {\rm of \; the \; calibrated \; Span}$$

$$E_{globalpTMin} = \sqrt{E_S^2 + E_T^2} = \sqrt{21.3205^2 + 6.6300^2}$$

$$E_{globalpTMin} = 22.3276 \, mm H_2 O$$

$$E_{\mathit{globalpTMin}} = 0.657\%$$
 of the calibrated Span

The larger global error is:

$$E_{global} = 39.2662 \, mmH_2O$$

$$E_{\it global} = \! 1.155\% \;$$
 of the calibrated Span

Calculation of the Response Time

The response time is obtained through the Equation 2.14: $TR_S = TR_{listed} \cdot L$

Considering that the transmitter is range 2 type, the filling fluid is DC200/20.

However, the temperature to be used is closer to the Maximum value, because the temperature will not necessarily be kept on the maximum. So:

Maximum Temperature on the H Side Capillary = 60°C.

Maximum Temperature on the L Side Capillary, 35°C, from the Table 2.9:

$$TR_{listed}H = 0.455 \text{ s/m}$$

 $TR_{listed}L = 0.698 \text{ s/m}$

Thus:

$$TRH = 0.455 \times 2.5 = 1.1375$$
 s
 $TRL = 0.698 \times 4.5 = 3.1410$ s

NOTE

Note that the response time between the sides is longer than 0.5 second and therefore this type of assembling is not recommended. It is advisable to reduce this difference.

$$TR_s = TR H + TR L = 4.2785 \text{ sec}$$

This response time refers only to the remote seal. To calculate the response time of the remote seal and transmitter set, add the time of both:

$$TR = TR_s + TR_T = 4.2785 + 0.1 = 4.3785 \text{ sec}$$

Checking the Capillary Length

To evaluate the maximum length of the capillary, three conditions on Chapter 2 must be met.

1º - Check if the dilated or contracted volume related to the initial volume of the seal diaphragm is in the Lower and Upper Limits (VCmin and VCmax) according to Equation 2.12.

$$VC_{\min} \le V_{total} \le VC_{\max}$$

Maximum Limit of the Transmitter: URL = 50Kpa = 5098.58 mmH₂O.

Thus, the process pressure conditioned to the transmitter URL will be:

$$%VC_{\min} = \frac{MVP}{URL} \times 100$$

MVP=2400 mmH $_2$ O (MVP: The larger value between the |V.sup| and |V.inf|)

$$\%VC_{\min} = \frac{2400}{5098.58} \times 100 = 47.1 \%$$

Table 2.18 shows the VC $_{\rm mim}$ value. Considering that the assembling was performed with a range 2 transmitter, the value relative to $%VC_{\rm min}$ is obtained by the linear interpolation between 50% and 40%, whereby:

$$VC_{\min} = 2.76 \cdot (10^{-2} \text{ cm}^3)$$

VC_{max} is obtained on Table 2.10. Considering the # 0.05 mm Inox Steel diaphragm material, the family 7 diaphragm and the process °C temperature, one has:

Maximum Temperature in the H Side Seal, 70°C.

Maximum Temperature in the L Side Seal, 120°C, on table 2.10, means:

$$VC_{\text{max}}H = 93.7 \cdot (10^{-2} \text{ cm}^3)$$

 $VC_{\text{max}}L = 85.9 \cdot (10^{-2} \text{ cm}^3)$

From the calculation:

$$V_{total}H1c = 0.1823 \ cm^3$$
 ("Upper Temperature Variation")
 $V_{total}L1c = 0.2042 \ cm^3$ ("Upper Temperature Variation")

$$\begin{aligned} &\left|V_{total}H2c\right| = \left|-0.1024\right| = 0.1024 \ cm^3 \ (\text{``Lower Temperature Variation''}) \\ &\left|V_{total}L2c\right| = \left|-0.1113\right| = 0.1113 \ cm^3 \ (\text{``Lower Temperature Variation''}) \end{aligned}$$

All the values are in their lower and upper limits according to equation 2.12, which makes the first condition acceptable.

2º - Check if the response time is compatible with the process variables, and if there is enough time for the pressure transmitted guarantees the application control limits.

Requested Client Time = 10 s Calculated Time = 4.3785 s

Therefore, as a conclusion, the lengths satisfy the second condition.

3º - Check if the global assembling error is within client expectations.

Have:

Global Error Expected by User: 0.5% of the calibrated span Global Assembling Error: 1.155% of the calibrated span

Thus, the Percent Error is greater than expected, so one concludes that the lengths do not meet the third condition.

Conclusion about the Capillary Length

As the third condition is not favorable, the remote seal assembled do not meet the application and user expectations.

It is worth remembering that the last condition do not depend only on the capillary length, hence it is possible to improve it and to make the application feasible using Table 2.2 of the Chapter 2.

Example 2

 $\label{lem:combining} \textbf{Combining Geometric Symmetry with Thermal Symmetry to minimize the Error.}$

A – TRANSMITTER DATA	RESPONSE
1. Type of Transmitter (Absolute, Gauge, Differential)	Differential
2. Range Superior Value (V.sup.) (mmH2O @ 4 °C)	2400
3. Range Inferior Value (V. inf.) (mmH2O @ 4 °C)	-1000
4. Transmitter Calibration (Span) (mmH2O @ 4 °C)	3400
5. Transmitter Range (2,3,4,5)	2
6. Diaphragm Material/Fill Oil	316 SST/Sillicone
7. Maximum Ambient Temperature T Max. (°C)	30
8. Minimum Ambient Temperature T Min. (°C)	-5
9. Static Pressure Variation (Bar)	3
10. Pressure Transmitter Error to T Max. (Calibration percent)	0.078
11. Pressure Transmitter Error to T Min. (Calibration percent)	0.154
12. Transmitter Accuracy (Transmitter Calibration percent)	0.075
13. Stability/Time (Transmitter Calibration percent / months)	0.225 / 60
14. Transmitter Response Time (seconds)	0.1

Table 5.6 – Transmitter Data (Example2)

B – SEAL/LEVEL DATA	RESPONSE
1. Type of Connection (One Seal, Two Seals, One Level, Level/Seal)	Two Seals
2. Capillary Filling Fluid (Table 2.4)	Dc 200
3. Geometric Symmetry (Symmetric, Assymetric)	Symmetric
4. Thermic Symmetry (Symmetric, Assymetric)	Symmetric
5. Diaphragm Material (Steel, Hasteloy, Monel, Titanium, Tantalum and other)	Steel
6. Diaphragm Thickness	0.05 mm
B.1 – H Side	
1. H Side Model (SR301T, SR301E, SR301R, SR301S, SR301P, SR301Q, LD30XL, LD30XS)	SR301E
2. Side H Diameter Seal (N Inch, DN (mm))	3 Inch
3. H Side Diaphragm Family (Table 2.5)	7
4. Diaphragm Reservoir Volume – Vrdf (cm3) (Table 2.6)	105.6E-2
5. H Side Capillary Length (meters)	4.5
6. H Side Extension Length (meters)	0.10
B.2 – L Side	
1. L Side Model (SR301T, SR301E, SR301R, SR301S, SR301P, SR301Q, LD30XL, LD30XS)	SR301E
2. Side L Diameter Seal (N Inch, DN (mm))	3 Inch
3. L Side Diaphragm Family (Table 2.5)	7
4. Diaphragm Reservoir Volume – Vrdf (cm3) (Table 2.6)	105.6E-2
5. L Side Capillary Length (meters, N.A. – non applicable)	4.5
6. L Side Extension Length (meters)	0.10

Table 5.7 – Level/Seal Data (Example 2)

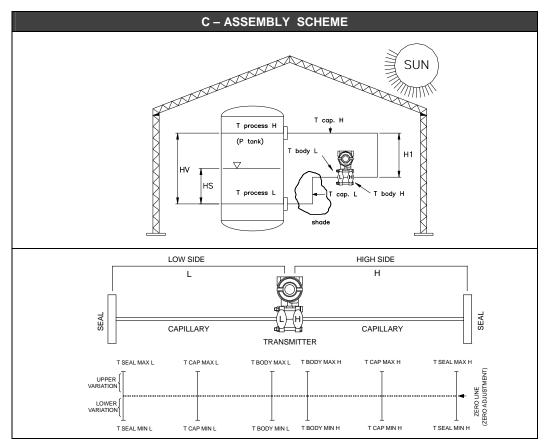


Table 5.8 – Assembly Scheme (Example 2)

D – PROCESS DATA	RESPONSE
D.1 – H Side	
1. T seal max H – Maximum Temperature in the H Side Seal (°C)	90
2. T seal min H – Minimum Temperature in the H Side Seal (°C)	80
3. T cap max H – Maximum Temperature in the H Side Capillary (°C)	30
4. T cap min H – Minimum Temperature in the H Side Capillary (°C)	-5
5. T body max H – Maximum Temperature in the H Side Body (°C)	30
6. T body min H – Minimum Temperature in the H Side Body (°C)	-5
D.2 – L Side	
1. T seal max L – Maximum Temperature in the L Side Seal (°C)	90
2. T seal min L – Minimum Temperature in the L Side Seal (°C)	80
3. T cap max L – Maximum Temperature in the L Side Capillary (°C)	30
4. T cap min L – Minimum Temperature in the L Side Capillary (°C)	-5
5. T body max L – Maximum Temperature in the L Side Body (°C)	30
6. T body min L – Minimum Temperature in the L Side Body (°C)	-5
D.3 – Pressure	
1. Maximum Process Pressure (bar abs.)	5
2. Minimum Process Pressure (bar abs.)	2

Table 5.9 – Process Data (Example 2)

E – USER EXPECTANCY	RESPONSE
1. Global Error Requested by User (% Transmitter Calibration)	0.5%
2. Response Time Requested by the Mesh Control (seconds)	10

Table 5.10 – User Expectancy (Example 2)

Error Calculation by Temperature

Have:

10 - "Upper Variation of Temperature"

Seal L and H Side

$$\Delta T_{seal} = (90 - 25) = 65 \,^{\circ} C$$

$$\Delta T_{cap} = (30 - 25) = 5 \,^{\circ} C$$

$$\Delta T_{body} = (30 - 25) = 5 \,^{\circ} C$$

$$E_H = E_L = +15.2864 \, mmH_2O$$

20 - "Temperature Lower Variation"

Seal L and H Side

$$\Delta T_{seal} = (80 - 25) = 55 \,^{\circ} C$$
 $\Delta T_{cap} = (-5 - 25) = -30 \,^{\circ} C$
 $\Delta T_{body} = (-5 - 25) = -30 \,^{\circ} C$
 $E_H = E_L = -13.9468 \, mmH_2O$

Calculation of Seal/Level Error

To calculate the Seals Error, verify the cases of symmetry. In this case, there is a Geometric Asymmetry and a Thermal Symmetry, and therefore the Equation 2.12 on Chapter 2 must be used.

$$Es = \sqrt{(E_H)^2 + (E_L)^2} \times \left(\frac{1}{\sqrt{6}}\right)$$

10 - "Upper Temperature Variation"

$$Es1 = \sqrt{(15.2864)^2 + (15.2864)^2} \times \left(\frac{1}{\sqrt{6}}\right)$$

$$Es1 = 8.8260 \text{ mmH}_2\text{O}$$

2º - "Lower Temperature Variation"

$$Es2 = \sqrt{(-13.9468)^2 + (-13.9468)^2} \times \left(\frac{1}{\sqrt{6}}\right)$$

$$Es2 = 8.0520 \text{ mmH}_2\text{O}$$

Calculation of the Transmitter Accuracy with Seal/Level

NOTE

The transmitter accuracy is not significantly altered by the addition of seal/level. However, the measuring error resulting from the combination suffers significant increase due to physical and geometric parameters, in terms of temperature variation.

$$Accuracy = \frac{0.075}{100} \cdot 3400 = 2.55 \text{ mmH}_2\text{O}$$
 (See Transmitter's Manual)

Calculation of the Global Error of Transmitter Assembling with Seals/Level

From Equation 2.14 the global error of the remote seal must be calculated:

$$E_{TpT \max} = \frac{0.078}{100} \cdot 3400 = 2.6520 \ mmH_2O$$

$$E_{TpT\,\text{min}} = \frac{0.154}{100} \cdot 3400 = 5.2360 \ mmH_2O$$

$$E_{globalpTMax} = \sqrt{E_S^2 + E_T^2} = \sqrt{8.8260^2 + 2.6520^2}$$

$$E_{globalpTMax} = 9.216 mm H_2 O$$

$$E_{\it globalpTMax} = 0.271\%$$
 of the calibrated Span

$$E_{globalnTMin} = \sqrt{E_S^2 + E_T^2} = \sqrt{8.0520^2 + 5.2360^2}$$

$$E_{globalpTMin} = 9.605 \, mm H_2 O$$

$$E_{\it globalpTMin} = 0.283\%$$
 of the calibrated Span

The larger global error is:

$$E_{global} = 9.605 \, mmH_2O$$

$$E_{\it global} = 0.283\%$$
 of the calibrated Span

Calculation of the Response Time

The response time is obtained through the Equation 2.14: $TR_{S} = TR_{listed} \cdot L$

Considering that the transmitter is range 2 type, the filling fluid is DC200/20.

However, the temperature to be used is closer to the Maximum value, because the temperature will not necessarily be kept on the maximum. So:

Maximum Temperature on the H Side Capillary, 30 °C.

Maximum Temperature on the L Side Capillary, 30°C, from the Table 2.9:

$$TR_{listed}H = TR_{listed}L = 0.698 \ s/m$$

Thus:

$$TRH = TRL = 0.698 \times 4.5 = 3.1410 \text{ s}$$

NOTE

Note that the response time between the sides is smaller than 0.5 second and therefore this type of assembling is recommended.

$$TR_s = TR H + TR L = 6.2820 \text{ sec}$$

This response time refers only to the remote seal. To calculate the response time of the remote seal and transmitter set, add the time of both:

$$TR = TR_S + TR_T = 6.2820 + 0.1000 = 6.3820 \text{ sec}$$

Checking the Capillary Length

To evaluate the maximum length of the capillary, three conditions on Chapter 2 must be met.

1º - Check if the dilated or contracted volume related to the initial volume of the seal diaphragm is in the Lower and Upper Limits (VCmin and VCmax) according to Equation 2.12.

$$VC_{\min} \leq V_{total} \leq VC_{\max}$$

Maximum Limit of the Transmitter: URL = 50Kpa = 5098.58 mmH₂O

Thus, the process pressure conditioned to the transmitter URL will be:

$$\%VC_{\min} = \frac{MVP}{URL} \times 100$$

MVP=2400 mmH $_2$ O (MVP: The larger value between the |V.sup| and |V.inf|)

$$%VC_{\min} = \frac{2400}{5098.58} \times 100 = 47.1\%$$

Table 2.18 shows the VC $_{\rm mim}$ value. Considering that the assembling was performed with a range 2 transmitter, the value relative to $%VC_{\rm min}$ is obtained by the linear interpolation between 50% and 40%, whereby:

$$VC_{\min} = 2.76 \cdot (10^{-2} x \ cm^3)$$

VC_{max} is obtained on Table 2.10. Considering the # 0.05 mm Steel diaphragm material, the family 7 diaphragm and the process °C temperature, one has:

Maximum Temperature in the H Side Seal, 90 °C.

Maximum Temperature in the L Side Seal, 90°C, on table 2.10, means:

$$VC_{\text{max}}H = VC_{\text{max}}L = 85.9 \cdot (10^{-2} \text{ cm}^3)$$

From the calculation:

$$V_{total}H1c$$
 = $V_{total}L1c$ = $0.108~cm^3$ ("Upper Temperature Variation")

$$V_{total}H2c=\left|V_{total}L2c\right|=\left|-0.099\right|=0.099~cm^3$$
 ("Lower Temperature Variation")

All the values are in their lower and upper limits according to equation 2.12, which makes the first condition acceptable.

2º - Check if the response time is compatible with the process variables, and if there is enough time for the pressure transmitted guarantees the application control limits.

Requested Client Time = 10 s Calculated Time = 6.3820 s

Therefore, as a conclusion, the lengths satisfy the second condition.

3º - Check if the global assembling error is within client expectations.

Have:

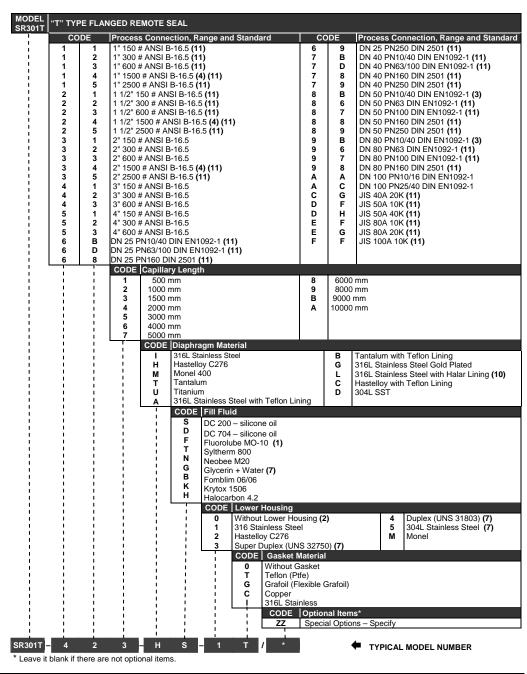
Global Error Expected by User: 0.5% of the calibrated span Global Assembling Error: 0.283% of the calibrated span

Thus, the Percent Error is smaller than expected, so one concludes that the assembling meets the third condition.

Conclusion about the Capillary Length

As all the condition is favorable, the remote seal assembled do meet the application and user expectations.

TYPE OF SEAL AND ORDERING CODE


"T" Type Flanged Remote Seal - SR301T

Description

The **SR301T** is a flanged seal with welded diaphragm. It can be supplied with an optional flush connection and housing. The flush connection removes deposits of the diaphragm without disconnecting the seal. If installed correctly, the seal flange does not get wet in contact with the process fluid during normal operation. However, the diaphragm and housing are wetted.

Bolts and nuts are not supplied with the seal.

For Dimensions Models and Pressure Limits see respectively the pages 6.24 (for integral flange), 6.25, 6.26 (for slip-on flange) and 6.29 for Dimensions and page 6.17 for Pressure Limits.

	OPTIONAL ITEMS		
Shield Material	A0 - 304 Stainless Steel A1 - 316 Stainless Steel A2 - 304 Stainless Steel With PVC Lining A3 - 316 Stainless Steel With PVC Lining		
Material / Flange Type	F0 - 316L Stainless Steel (Integral Flange) F1 - C276 Hastelloy (Integral Flange) F2 - 304L Stainless Steel (Integral Flange) (7) F3 - Super Duplex (UNS 32750) (Integral Flange) (7) F4 - Duplex (UNS 31803) (Integral Flange) (7) F5 - Coated Carbon Steel (Slip-on Flange) F6 - 304 Stainless Steel (Slip-on Flange) F7 - 316 Stainless Steel (Slip-on Flange)		
Lower Housing Connection	G0 - With Flush Connection of ½" NPT (If Supplied with Housing) G1 - With Two Flush Connections of ½" NPT at 180° G2 - With Two Flush Connections of ½" NPT at 90° G3 - With Two Connections of ½" – 14 NPT at 180° (With Lid) G4 - Without Flush Connection		
Face (8)	H0 - Raised Face (ANSI, DIN, JIS) H1 - Flat Face (ANSI, DIN) H2 - Flat Face With Sealing Channel — RTJ (ANSI B 16.20) (5) H3 - Tongue Type Face (DIN) (7) H4 - Groove Type Face (DIN) (7) H5 - Small Groove (ANSI) (7) H6 - Small Groove (ANSI) (7) H7 - Large Tongue (ANSI) (7) H8 - Large Groove (ANSI) (7)		
Insulator Kit (6)	K0 - Without Kit K1 - With Kit		
Special Procedures	P1 - Degrease Cleaning (Oxygen or Chlorine Service) (9) P5 - Mounting according NACE Standard		
Diaphragm Thickness	N0 - Default (12) N1 - 0.1mm (7)		

(1) Fluorolube Filling Fluid is not available with Monel Diaphragm. Supplied Without Gasket The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40. Only the gasket code available I (Stainless 316). The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for the models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special format. (7) Item by inquiry.(8) Finishing of the flange faces sealing regions Canadard, ANSI B 10.37 (NISS-SP16): Raised or Flat Face with grooved lining: 3.2 to 6.3 μm Ra (125 to 250 μ" AA); Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 μm Rt (125 μ" AA); b - Standard RTJ ANSI B 16.20 / MSS-SP6: Smooth finishing not exceeding: 4.6 μm Rt (125 μ" AA); a - Standard: ANSI B 16.5 / MSS-SP6: Smooth finishing not exceeding: 1,6 µm Rt (63 µ" AA); c - Standard DIN EN-1092-1: Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA); Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA). d - Standard Din 2501 (DIN 2526): Smooth Finishing "Ε" (PN 160 to PN250): Rz = 16 (3.2 μm Ra (125 μ" AA)). Groove Finishing; 3.2 to 6.3 µm Ra (125 to 250 µ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (9) Degrease cleaning not available for carbon steel flanges (10) Applicable only for: - Diaphragm Thickness of 0.05mm Diameters/Capillary Length: 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry). 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models. 4" ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models. - Faces: RF and FF. Temperature Limits: +10 to 100°C; +101 to 150°C (by inquiry). Not applicable for diaphragm thickness: N1 – 0.10mm. Not applicable for use with housing. Performance with Halar see page 6.22.

Flanged Remote Seal with Extension - SR301E

Description

The **SR301E** is a flanged seal with welded diaphragm. The diaphragm is extended from the seal flange and welded to the extension. Differently from Model SR301T, it is not supplied with housing, because the diaphragm coincides with the internal wall of the tank.

(12) Diaphragms of Titanium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm

Bolts and nuts are not supplied with the seal.

(11) Not available for slip-on flange

For Dimensions Models and Pressure Limits see respectively the pages 6.24 (for integral flange), 6.25 and 6.26 (for slip-on flange) for Dimensions and page 6.17 for Pressure Limits.

MODEL SR301E	FLAN	GED REI	MOTE SE	EAL WITH EXTE	NSION	
	CODE Process Connection, Range and Standard (3)					
!	2	1	1.1/2" 150 # ANSI B-16.5 (9)			
i	2	2	1.1/2" 300 # ANSI B-16.5 (9)			
1	2	3	1.1/2" 300 # ANSI B-16.5 (9)			
!	3	1 1	2" 150 # ANSI B-16.5 (9)			
-	3	2				
i	3	3	2" 300 # ANSI B-16.5			
1	4	1		2" 600 # ANSI B-16.5		
!	4		3" 150 # ANSI B-16.5			
i	-	2		3" 300 # ANSI B-16.5		
i	4	3		3" 600 # ANSI B-16.5		
!	5 5	1 2		# ANSI B-16.5		
- 1	5			# ANSI B-16.5		
i		3		# ANSI B-16.5	4000 4 (0)	
1	7	В		PN10/40 DIN EN		
!	8	В		PN10/40 DIN EN		
i	9	C		PN10/40 DIN EN		
i	Α	A		PN10/16 DIN E		
! .	A	С		PN25/40 DIN E		
-	- 1	!		Capillary Leng	th	
i	i	- 1	1	500 mm		
!	- !	i	2	1000 mm		
- 1	- 1	!	3	1500 mm		
i	i	- 1	4	2000 mm		
1	!	i	5	3000 mm		
!	- 1	- 1	6	4000 mm		
i	i	- !	7	5000 mm		
i	1	i	8	6000 mm		
!	!	1	9	8000 mm		
1	- 1	!	В	9000 mm		
i	i	-	Α	10000 mm		
1	!	i	С	11000 mm		
:	-	1		CODE Diaphr	agm Material	
i	i	- 1	I 316L Stainless Steel			
1	1	i	i		oy C276	
!	!	1	1	M Monel		
i	i	!		T Tantal	um l	
i	- 1	i	i			
!						
	- 1	1	1			
	i		- !	A 316L S	stainless Steel with Teflon Lining	
1	i		!	A 316L S B Tantal	stainless Steel with Teflon Lining um with Teflon Lining	
!			•	A 316L S B Tantali G 316L G	stainless Steel with Teflon Lining um with Teflon Lining Sold Plated Stainless Steel	
			i	A 316L S B Tantali G 316L G L 316L S	tainless Steel with Teflon Lining um with Teflon Lining Sold Plated Stainless Steel tainless Steel with Halar Lining (8)	
			i	A 316L S B Tantali G 316L S L 316L S C Hastell	stainless Steel with Teflon Lining um with Teflon Lining Sold Plated Stainless Steel stainless Steel with Halar Lining (8) oy with Teflon Lining	
			i	A 316L S B Tantal G 316L G L 316L S C Hastel	tainless Steel with Teflon Lining um with Teflon Lining Sold Plated Stainless Steel Stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid	
			i	A 316L S B Tantali G 316L S L 316L S C Hastell	tainless Steel with Teflon Lining um with Teflon Lining Sold Plated Stainless Steel Stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil	
			i	A 316L S B Tantali G 316L S L 316L S C Hastell CODE S D	trainless Steel with Teflon Lining um with Teflon Lining sold Plated Stainless Steel stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil	
			i	A 316L S B Tantall G 316L S C Hastell S CODE S D F	trainless Steel with Teflon Lining Im with Teflon Lining Sold Plated Stainless Steel Stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 - silicone oil DC 704 - silicone oil Fluorolube MO-10 (1)	
			i	A 316L S B Tantal G 316L S L 316L S C Hastel CODE S D F T	tainless Steel with Teflon Lining Im with Teflon Lining Sold Plated Stainless Steel Stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syltherm 800	
			i	A 316L S B Tantalı G 316L S C Hastell S D F T N	trainless Steel with Teflon Lining um with Teflon Lining solid Plated Stainless Steel stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syltherm 800 Neobee M20	
			i	A 316L S B Tantala G 316L S L 316L S C Hastel S D F T N G G G G G G G G G G G G G G G G G G	trainless Steel with Teflon Lining Im with Teflon Lining Sold Plated Stainless Steel Itainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syttherm 800 Neobee M20 Glycerin + Water (5)	
			i	A 316L S B Tantal G 316L C L 316L S C Hastel D CODE S D F T N G G B B	tainless Steel with Teflon Lining um with Teflon Lining sold Plated Stainless Steel stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syttherm 800 Neobee M20 Glycerin + Water (5) Fomblim 06/06	
			i	A 316L S B Tantala G 316L C L 316L S C Hastel S D F T N G G B K K K	trainless Steel with Teflon Lining Im with Teflon Lining Sold Plated Stainless Steel Stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syltherm 800 Neobee M20 Glycerin + Water (5) Fomblim 06/06 Krytox 1506	
			i	A 316L S B Tantala G 316L C L 316L S C Hastel S D F T N G B K H H H H	trainless Steel with Teflon Lining Im with Teflon Lining Sold Plated Stainless Steel Itainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syltherm 800 Neobee M20 Glycerin + Water (5) Fomblim 06/06 Krytox 1506 Halocarbom 4.2	
			i	A 316L S B Tantal G 316L C L 316L S C Hastel	tainless Steel with Teflon Lining Im with Teflon Lining Sold Plated Stainless Steel Itainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syltherm 800 Neobee M20 Glycerin + Water (5) Fomblim 06/06 Krytox 1506 Halocarbom 4.2 CODE Extension Length (2)	
			i	A 316L S B Tantala G 316L C L 316L S C Hastel S D F T N G B K H H H H	tainless Steel with Teflon Lining um with Teflon Lining solid Plated Stainless Steel stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Sytherm 800 Neobee M20 Glycerin + Water (5) Fomblim 06/06 Krytox 1506 Halocarborm 4.2 CODE Extension Length (2) 1 50 mm (2")	
			i	A 316L S B Tantala G 316L C L 316L S C Hastell S D F T N G B K H H	tainless Steel with Teflon Lining Im with Teflon Lining Sold Plated Stainless Steel Itainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syltherm 800 Neobee M20 Glycerin + Water (5) Fomblim 06/06 Krytox 1506 Halocarbom 4.2 CODE Extension Length (2)	
			i	A 316L S B Tantala G 316L C L 316L S C Hastell S D F T N G B K H H	tainless Steel with Teflon Lining um with Teflon Lining solid Plated Stainless Steel stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid	
			i	A 316L S B Tantala G 316L C L 316L S C Hastell S D F T N G B K H H	tainless Steel with Teflon Lining Im with Teflon Lining Sold Plated Stainless Steel Stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syltherm 800 Neobee M20 Glycerin + Water (5) Fomblim 06/06 Krytox 150/6 Halocarbom 4.2 CODE Extension Length (2) 1	
			i	A 316L S B Tantala G 316L C L 316L S C Hastell S D F T N G B K H H	tainless Steel with Teflon Lining Im with Teflon Lining Solid Plated Stainless Steel Itainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Sytherm 800 Neobee M20 Glycerin + Water (5) Fomblim 06/06 Krytox 1506 Halocarborn 4.2 CODE Extension Length (2) 1	
			i	A 316L S B Tantala G 316L C L 316L S C Hastell S D F T N G B K H H	tainless Steel with Teflon Lining Im with Teflon Lining Sold Plated Stainless Steel Stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syltherm 800 Neobee M20 Glycerin + Water (5) Fomblim 06/06 Krytox 1506 Halocarborm 4.2 CODE Extension Length (2) 1 50 mm (2") 2 100 mm (4") 3 150 mm (6") 4 200 mm (8") CODE Optional Items*	
			i	A 316L S B Tantala G 316L C L 316L S C Hastell S D F T N G B K H H	tainless Steel with Teflon Lining Im with Teflon Lining Sold Plated Stainless Steel Stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syltherm 800 Neobee M20 Glycerin + Water (5) Fomblim 06/06 Krytox 1506 Halocarbom 4.2 CODE Extension Length (2) 1 50 mm (2") 2 100 mm (4") 3 150 mm (6") 4 200 mm (8") CODE Optional Items*	
SR301E	- 4		i	A 316L S B Tantala G 316L C L 316L S C Hastell S D F T N G B K H H	tainless Steel with Teflon Lining Im with Teflon Lining Sold Plated Stainless Steel Stainless Steel with Halar Lining (8) oy with Teflon Lining Filling Fluid DC 200 – silicone oil DC 704 – silicone oil Fluorolube MO-10 (1) Syltherm 800 Neobee M20 Glycerin + Water (5) Fomblim 06/06 Krytox 1506 Halocarbom 4.2 CODE Extension Length (2) 1 50 mm (2") 2 100 mm (4") 3 150 mm (6") 4 200 mm (8") CODE Optional Items*	

^{*} Leave it blank when there are not optional items.

	OPTIONAL ITEMS		
Shield Material	A0 - 304 Stainless Steel A1 - 316 Stainless Steel A2 - 304 Stainless Steel With PVC Lining A3 - 316 Stainless Steel With PVC Lining		
Material / Flange Type	F0 - 316L Stainless Steel (Integral Flange) F1 - C276 Hastelloy (Integral Flange) F2 - 304L Stainless Steel (Integral Flange) (5) F3 - Super Duplex (UNS 32750) (Integral Flange) (5) F4 - Duplex (UNS 31803) (Integral Flange) (5) F5 - Coated Carbon Steel (Slip-on Flange) F6 - 304 Stainless Steel (Slip-on Flange) F7 - 316 Stainless Steel (Slip-on Flange)		
Face (6)	Ho - Raised Face (ANSI, DIN, JIS) H1 - Flat Face (ANSI, DIN) H2 - Flat Face With Sealing Channel - RTJ (ANSI B 16.20) H3 - Tongue Type Face (DIN) (5) H4 - Groove Type Face (DIN) (5) H5 - Small Tongue (ANSI) (5) H6 - Small Groove (ANSI) (5) H7 - Large Tongue (ANSI) (5) H8 - Large Groove (ANSI) (5)		
Extension Material	J0 - 316 Stainless Steel J1 - C276 Hastelloy J2 - 304l Stainless Steel (5)	J3 - Super Duplex (UNS 32750) (5) J4 - Duplex (UNS 31803) (5)	
Insulator Kit (4)	K0 - Without Kit K1 - With Kit		
Special Procedures	P1 - Degrease Cleaning (Oxygen or Chlorine Service) (7) P5 - Mounting according NACE Standard		
Diaphragm Thickness	N0 - Default (10) N1 - 0.1mm (5)		

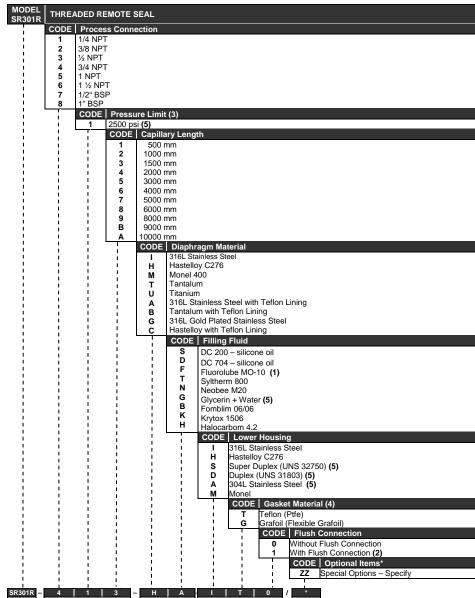
```
(1) Fluorolube Filling Fluid Is Not Available With Monel Diaphragm.
(2) The Smar Standardized PN10/40 (With Dimension PN40), however, the DIN Standard Divides It in PN10/16 and PN25/40.
(3) Flanges ANSI # (1500 and 2500), DIN PN (63, 100, 160 and 250) and JIS. Supply by inquiry.

(4) The Insulator Kit is applicable with Raised Face (H0) and Flat Face (H1), with Gasket T (Teflon) material and limited only for the
models ANSI until #600, DIN until P40 and JIS until 40K; for models with extension the gasket T (Teflon) have special format.
(5) Item by inquiry.
(6) Finishing of the flange faces sealing regions.
      a - Standard: ANSI B 16.5 / MSS-SP6
            Raised or Flat Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ" AA);
     Face Small or Large Tongue and Small or Large Groove with smooth finishing not exceeding: 3.2 \mum Rt (125 \mu" AA); b - Standard RTJ ANSI B 16.20 / MSS-SP6:
           Smooth finishing not exceeding: 1,6 µm Rt (63 µ" AA);
      c - Standard DIN EN-1092-1:
Grooved Finishing "B1" (PN 10 to PN40): 3.2 to 12.5 μm Ra (125 to 500 μ" AA);
Smooth Finishing "B2" (PN 63 to PN100), "C" (Tongue) and "D" (Groove): 0.8 to 3.2 μm Ra (32 to 125 μ" AA).
      d - Standard Din 2501 (DIN 2526):
           Smooth Finishing "E" (PN 160 to PN250): Rz = 16 (3.2 \mum Ra (125 \mu" AA)).
      e - Standard Jis B2201:
Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA).
           Whereby: Ra (average ruggedness) and Rt (total ruggedness).
(7) Degrease cleaning not available for carbon steel flanges.(8) Applicable only for:
      - Diaphragm Thickness of 0.05mm.
- Diameters/Capillary Length:
2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry).
            3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
4" ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models.
       - Faces: RF and FF.

    Temperature Limits:

            +10 to 100°C;
       +101 to 150°C (by inquiry).

Not applicable for diaphragm thickness: N1 – 0.10mm.
        Performance with Halar see page 6.22.
(9) Not available for slip-on flange.
 (10) Diaphragms of Titanium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm
```


Threaded Remote Seal - SR301R

Description

The **SR301R** is a threaded connection seal. The diaphragm is welded to the flange. This model is always supplied with housing, because the process thread is located in this part. The (optional) flush connection in the housing enables to remove deposits on the diaphragm without disconnecting the seal. The parts are bolted together and sealed with a gasket.

This model is supplied with bolts and nuts in Stainless Steel 316.

For Dimension Models and Pressure Limits see respectively the page 6.27 for Dimensions and page 6.17 for Pressure Limits.

* Leave	it	blank	when	there	are	not	O	ptional	items.

	OPTIONAL ITEMS
Shield Material	A0 - 304 Stainless Steel A1 - 316 Stainless Steel A2 - 304 Stainless Steel With PVC Lining A3 - 316 Stainless Steel With PVC Lining
Flange Material	F0 - 316 Stainless Steel F1 - C276 Hastelloy F2 - 304L Stainless Steel F3 - Super Duplex (UNS 32750) (5) F4 - Duplex (UNS 31803) (5)
Lower Housing Connection	G0 - With Flush Connection of ¼" NPT (If Supplied with Housing) G1 - With Two Flush Connections of ½" NPT at 180° G2 - With Two Flush Connections of ½" NPT at 90° G3 - With Two Connections of ½" – 14 NPT at 180° (With Lid) G4 - Without Flush Connection
Special Procedures	P1 - Degrease Cleaning (Oxygen or Chlorine Service) (6)
Diaphragm Thickness	N0 – Default (7) N1 - 0.1mm (5)

- Note St301ft:

 (1) Fluorolube Filling Fluid Is Not Available With Monel Diaphragm.

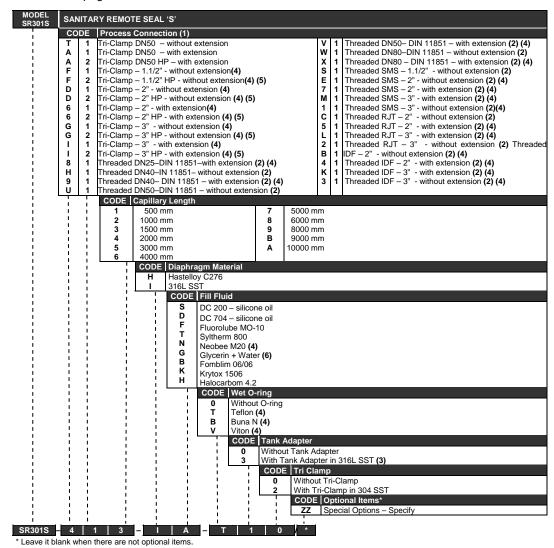
 (2) Flush connection not available for process connection 1½" NPT.

 (3) See Table 4 For Pressure Limits and Temperature.

 (4) See Table 7 Gasket Application Guide for Pressure and Temperature Limits.

 (5) Item by inquiry.

 (6) Degrease cleaning not available for carbon steel flanges.


 (7) Diaphragms of Titanium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm.

Sanitary Remote Seal - SR301S

Description

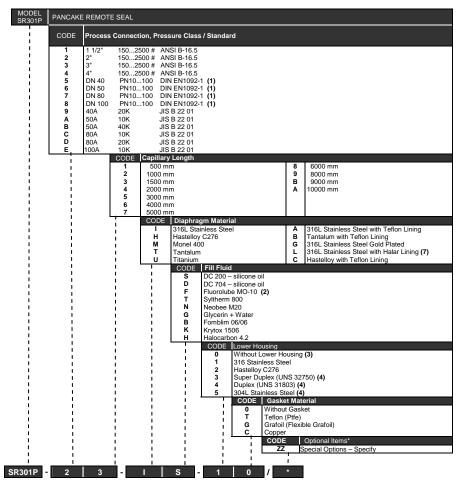
The **SR301S** is a seal for food and other applications where the sanitary connections are necessary. The diaphragm is welded to the connection face, which can be Threaded type or Tri-Clamp, allowing an easy and fast connection/disconnection of the process equipment.

For Dimension Models and Pressure Limits see respectively the pages 6.34, 6.35 and 6.36 for Dimensions and pages 6.17 and 6.18 for Pressure Limits.

OPTIONAL ITEMS									
Shield Material	A0 - 304 Stainless Steel A1 - 316 Stainless Steel A2 - 304 Stainless Steel with PVC Lining A3 - 316 Stainless Steel with PVC Lining								
Special Procedures	P1 - Degrease Cleaning (Oxygen or Chlorine Service) (7) P3 - Polishing of the wet parts according to 3A Certification (4) (6)								
Diaphragm Thickness	N0 - Default N1 - 0.1mm (6)								

Note – SR301S: (1) Extension Material in 316 Stainless Steel and wet part with diaphragm material. (2) Not available for Tri-clamp in 304 stainless steel. (3) Not available for without O-Ring option. (4) Compliant with 3A-7403 standard for food and other applications where sanitary connections are required: - Neobee M2O Filling Fluid - Wet Face lining: 0.8 μm Ra (32 μ" AA) - Wet O-Ring: Viton (5) HP – High Pressure. (6) Item by inquiry. (7) Degrease cleaning is not available for Carbon Steel Flanges.

Pancake Remote Seal - SR301P


Description

The **SR301P** is a seal with welded diaphragm, whose assembly requests blind flanges. This model is supplied with housing and flush connection (optional). The flush connection removes deposits on the diaphragm without disconnecting the seal. The seal diaphragm and the housing are wetted (in contact with the process fluid). However, the blind flange does not get wet.

Bolts, nuts and blind flange are not supplied with the seal.

The pressure limits are established by pressure class of the blind flange.

For Dimensions Models and Pressure Limits see respectively the pages 6.28 and 6.29 for Dimensions and page 6.17 for Pressure Limits.

^{*} Leave it blank when there are not optional items.

	OPTIONAL ITEMS						
Shield Material	A0 - 304 Stainless Steel A1 - 316 Stainless Steel A2 - 304 Stainless Steel with PVC Lining A3 - 316 Stainless Steel with PVC Lining						
Flange Material	F0 - 316L Stainless Steel F1 - C276Hastelloy F2 - 304L Stainless Steel (4) F3 - Super Duplex (UNS 32750) (4) F4 - Duplex (UNS 31803) (4)						
Lower Housing Connection	G0 - With Flush Connection of ½" NPT (If Supplied with Housing) G1 - With Two Flush Connections of ½" NPT at 180° G2 - With Two Flush Connections of ½" NPT at 90° G3 - With Two Connections of ½" - 14 NPT at 180° (With Lid)						
Face (6)	H0 - Face (ANSI, DIN, JIS) (5)						
Insulator Kit	K0 - Without Kit K1 - With Kit						
Special Procedure	P1 - Degrease Cleaning (Oxygen or Chlorine Service)						
Diaphragm Thickness	N0 – Default (8) N1 - 0.1 mm						

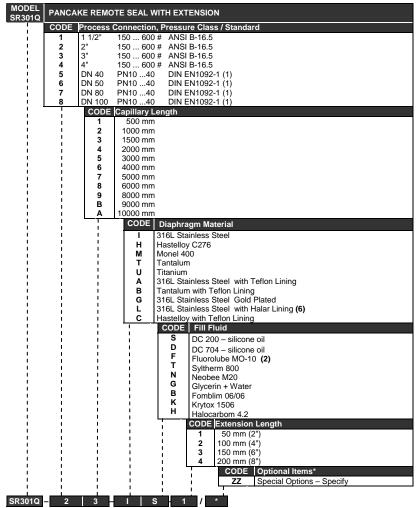
```
Note - SR301P:
(1) Meets Din 2501 PN 10...PN250 Standard, however with
                                                                                                          (6) Finishing of the flange faces sealing regions.
                                                                                                                 a - Standard ANSI B 16.5 / MSS-SP6:
Face with grooved lining: 3.2 to 6.3 μm Ra (125 to 250 μ" AA);
b - Standard DIN EN-1092-1:
grooved lining and if mounted with counter-flange by solicited pressure class.
(2) Fluorolube filling fluid is not available with Monel
diaphragm.
(3) Supplied without gasket.
                                                                                                                      Grooved Finishing (PN 10 to PN100): 3.2 to 12.5 \mu m Ra (125 to 500 \mu" AA); Standard JIS B2201:
                                                                                                                        Groove Finishing: 3.2 to 6.3 μm Ra (125 to 250 μ" AA).
Whereby: Ra (average ruggedness) and Rt (total ruggedness).
(4) Item by inquiry.
(5) This face does not cause interference when mounted with
counter-flanges with Flat Face (FF) or Raised Face (RF).
                                                                                                          (7) Applicable only for:

    ANSI B 16.5, DN 100 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry).
    ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 5 meters of capillary and level models (by inquiry).
    ANSI B 16.5, DN 100 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
    ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models.

    Faces: RF and FF.
    Temperature Limits:

                                                                                                                         +10 to 100°C;
+101 to 150°C (by inquiry).
                                                                                                                    Not applicable for diaphragm thickness: N1 – 0.10mm.
Not applicable for use with housing.
Performance with Halar see page 6.22.
                                                                                                          (8) Diaphragms of Titanium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm.
```

Pancake Remote Seal with Extension - SR301Q


Description

The **SR301Q** is a seal with welded diaphragm, whose assembly requests blind flanges. The diaphragm is extended from the seal flange and welded to the extension. Differently from Model SR301P, it is not supplied with housing, because the diaphragm coincides with the internal wall of the tank.

Bolts, nuts, gaskets and blind flange are not supplied with the seal.

The pressure limits are established by pressure class of the blind flange.

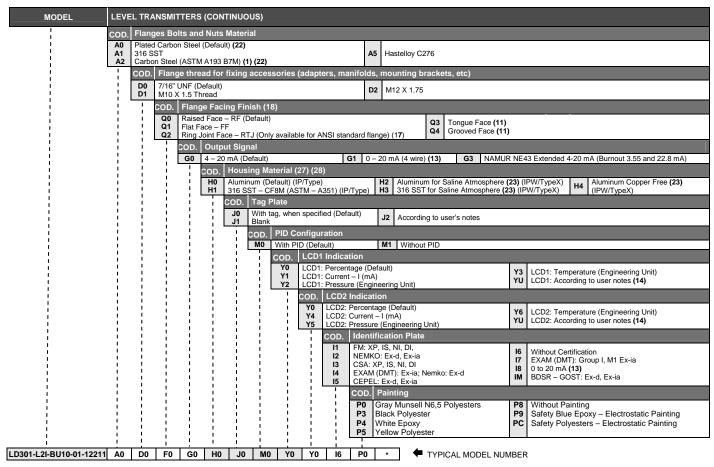
For Dimensions Models and Pressure Limits see respectively the page 6.28 for Dimensions and page 6.17 for Pressure Limits.

* Leave it blank when there are not optional items.

	OPTIONAL ITEMS
Shield Material	A0 - 304 Stainless Steel A1 - 316 Stainless Steel A2 - 304 Stainless Steel With PVC Lining A3 - 316 Stainless Steel With PVC Lining
Flange Material	F0 - 316L Stainless Steel F1 - C276 Hastelloy F2 - 304L Stainless Steel (3) F3 - Super Duplex (UNS 32750) (3) F4 - Duplex (UNS 31803) (3)
Face (5)	H0 - Face (ANSI, DIN, JIS) (4)
Extension Material	J0 - 316 Stainless Steel J1 - C276Hastelloy J2 - 304L Stainless Steel (3) J3 - Super Duplex (UNS 32750) (3) J4 - Duplex (UNS 31803) (3)
Insulator Kit	K0 - Without Kit K1 - With Kit
Special Procedure	P1 - Degrease Cleaning (Oxygen or Chlorine Service)
Diaphragm Thickness	N0 – Default (7) N1 - 0.1 mm

Note — SR301Q: (1) Meets Din 2501 PN 10...PN40 Standard, however with grooved lining and if mounted with counter-flange by solicited pressure class. (2) Fluorollube filling fluid is not available with Monel diaphragm. (3) Item by inquiry. (4) This face does not cause interference when mounted with counter-flanges with Flat Face (FF) or Raised Face (RF). (5) Finishing of the flange faces sealing regions: a - Standard ANSI B 16.5 / MSS-SP6: Face with grooved lining: 3.2 to 6.3 µm Ra (125 to 250 µ" AA); b - Standard DIN EN-1092-1: Groove Finishing: 3.2 to 6.3 µm Ra (125 to 250 µ" AA). Whereby: Ra (average ruggedness) and Rt (total ruggedness). (6) Applicable only for: Diameters/Capillary Length: 2" ANSI B 16.5, DN 80 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models. 4" ANSI B 16.5, DN 80 DIN, JIS 50 A, for seals up to 5 meters of capillary and level models. 4" ANSI B 16.5, DN 80 DIN, JIS 50 A, for seals up to 8 meters of capillary and level models. Faces: RF and FF. Temperature Limits: +10 to 100°C; +101 to 150°C (by inquiry). Not applicable for diaphragm thickness: N1 – 0.10mm. Performance with Halar see page 6.22. (7) Diaphragms of Titanium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm.

Level Transmitter - LD300L


Description

The **LD300L** is a pressure or level transmitter using a high side flange. Its technical specifications are the same as the LD300L catalogue. The specifications for precision, drift and temperature effect of the same as the LD300L catalogue. The LD300L is a transmitter for industrial applications. The process connections can be supplied with housing when not having an extension.

For LD300L dimensions see pages 6.30 (for integral flange) and 6.31 (for slip-on flange). For Pressure Limits see the Tables of the page 6.17.

MODEL	LEVI	EL TRA	NSMIT	TERS																			
LD301 LD302	HART	R IDATION	FIELDI	BUS™																			
LD303	PROF	IBUS PA	e Limi	its n	/lin.			Rane	ge limit	s N	lin.												
	COD	Min.	Ma	x. S	pan	Unit		Min.	Max	ر. S _ا	pan	Unit	Note									with small degradation of	accuracy. The
	L2 L3	-50 -250	25	0 2	.25 .08	kPa kPa		-200 -36	200 36	0.3		-		uppe	r range	value	must b	e limited	d to the flan	ge ratir	ng.		
	L4 L5	-2500 -25000	2500 2500		.83 8.3	kPa kPa		-360 -3625	360 3625	30.	3 psi 2 psi												
-	-		Diaphi 16LSS			I and I	Fill Flui	d (Lov		antalun	n Silicone	Oil (2)			E Has	telloyC2	276	Iner	t Krytox Oil	(1) (25)		<u>, </u>	
	:	2 3 3 H	16LSS ⁻ astello	Г уС276	Inert F Silicone	luorolul e Oil (1)	oe Oil (3)		8 Ta 9 3	antalun 16LSS	n Inert Flu Fomblin	uorolube n Oil	-) (25)	G Tan K Mor	talum nel400		Iner Iner	t Krytox Oil	(25) (1) (25)	R	316L SST Inert Haloc Hastelloy C276 Inert Haloc	4.2 Oil (1) (25)
	į		astello onel40	0	Silicone	e Oil (1)	(2)		D 3	16LSS	0 Fomblin I Inert Kr	ytox Oil) (25)		M Mor	nel400 (nel400 (Gold Pla Gold Pla	ited Silic	cone Oil (1) (t Krytox Oil	(2) (1) (25)	S	Tantalum Inert Haloc	4.20il (25)
	!		COD.				ind Dra ent in St				erial (Low		lonel 4	100 (1)								
	!		Н	Hastel	loy C2	76 (CV	/ – 12M ASTM –	W, AS	TM – Á		1)	N 3	16 SS	T – ČI	F8M (A				ent in Haswith PVDF				
į	į	i		COD.	Wett		ling Ma			de)	l y ly	alrez			,			Ŭ					
	-	 	;	В	Buna I	N	ngs opylene				T T	eflon		Ν	lote: O'	rings a	re not a	available	on the sid	es with	remote	e seals.	
	į	1		-	COD.		n/Vent F		n (Low	Side)	• •	lon											
	-	i	-	!	0 A		ut Drain		a to Pro	raee (Connection	n)	D U	Botto Top	m	N	rec	commer	nded.	•		nt valves are strongly	
	:	 	i	; !	!	COD.	Local			0033	Johneedor	"		ТОР			Dr	ain/Ven	t valve are	not ava	ilable o	on the sides with remote se	eals.
	į	1	-	1		0	Withou				an /I au 6		Vith Di	gital ir	ndicato								
	:	i	į	į		-		1/4 - 1	8 NPT (Withou	on (Low s ut Adapter								ert (3) (4) (6				
	!	 	i	i	!	į			e Seal	(With F	dapter) Plug) (7)					l (Low \ (With A) (3) (7)	W	Witho	ut Connection (Absolute R	(eference)
	į	1	-	1	į	-		COD.	1/2 - 1		onnection (29)	'n							A M20 x	1.5 (30	0)		
	-	i	!	1		-					(with 316 (with 316								B PG 13 Z User's				
	:	 	i	i	!	į	L	3			with 316 and Span			for ½	- 14 N	IPT) (9))						
	į	1	-	1	į	-	-	; [ero and S			ent									
i	į	į	!	!	-		į	!	1	COD.	Process 1" 150 #						1 3'	150#	(ANSI B16.	5)	- (6 DN 80 PN 10/40	
	-	 	i	i	!	-	-	į		٧	1" 300 # 1" 600 #	(ANSI	B16.5	(31)			2 3'	300 #	(ANSI B16. (ANSI B16.	.5)	8	7 DN 100 PN 10/16 BN 100 PN 25/40	
!	!	1			į	i	-	-		0	1.1/2" 150 1.1/2" 30	1A) # C	NSI B1	6.5)			3 4	150 #	(ANSI B16. (ANSI B16.	.5)	ı	S JIS 40A 20K (21) F JIS 50A 10K (21)	
į	i	į	!	!			į	!		Q	1.1/2" 60 2" 150 # (0 # (A	NSI B				D 4'	600 #	(ANSI B16. N 10/40 (31	.5)	(T JIS 50A 40K (21) 3 JIS 80A 10k (21)	
:	-	1	i	į	!	!		į		Α	2" 300 # 2" 600 #	(ANSI	B16.5				R D		N 10/40	,	H	L JIS 80A 20K (21) H JIS 100A 10K (21)	
	į	1	-	-	į	i	-	1				aterial			Туре	(Level		11 00 1	11 10/40			Z User's specification	
į	i	i	!	!		-	į	1	į	-		SL SST er's spe			ange)				(Integral Fl n Flange)	ange)		16 SST (Slip-on Flange) oated Carbon Steel (Slip-o	n Flange)
	-	1	i	į	!	!		į	-	;	CO		ctensi		ngth			3 15	50 mm (6")				
		 	!	-			1	!	1 1	!	1 2	50) mm () mm (2")				4 20	00 mm (8") ser's specifi	ication	No	te: Extension Material 316	L SST
:	-	 	i	i	1	-	-	į		i			OD.			(Level	l Tap)			6	316L :	SST with Teflon Lining (Fo	r 2"and 3")
	į	1	-	-	į	i	-		!	-			2		lloy C2	76				7 B		SST Gold plated lum with Teflon Lining	,
i	-	i	!	!	1	-	į	!	i	į			4		lum (10					L		Stainless Steel with Halar elloy with Teflon Lining	Lining (20)
	:	 	i		!	į	-	i		-	1 1		٠, ١	COD.	um (10)	luid (L	evel T	ap)		Α	304L	SST	
	i	1	-		į	-	-		į	-				1	DC 20	00 Silico	one Oil					Glycerin + Water (11)	
-	-	i	į		-	!	į	1	-	į			;	2		10 Fluo		Oil (8)			H H	omblim 06/06 Ialocarbon 4.2	
	-	 	-	i	!	į	1	i	1	-			¦ [Ņ		ee M20		ene Gly ing Mat			TS	syltherm 800 Oil	
į	į	!	 	-	i		!	-		:			į	1	0	Withou	ut Lowe	r Housi			4 D	Ouplex (UNS 31803) (11)	
	-	i				-	į	1	-	į			-	1	2	Hastel	loy C2		22750\ 444			tainless Steel 304L (11)	
! !	!	[[[1			i	1	i	!	-			:	i	3	COD.	Gaske	et Mater					
į	i	!	!	!	-	-		-	į	:			į	1	1	Т	Teflon						
-	-	! ! !	i	į	-			į	-	-			!	i	į	G C	Coppe						
!	-	1	-	-	į	-	1	-		-	-		-	 	1	<u> </u>		ess 316 Contin	L ues Next F	Page _			
	1	į				 	į	-		į				1	1		Ţ						
LD301	L2	1	Ī	В	Ū	1	0	0	1	1	2	2	1	1	1	Т	*	← 1	TYPICAL	MODE	L NU	MBER	

 $^{^{\}star}$ Leave it blank when there are not optional items.

^{*} Leave it blank when there are not optional items.

	OPTIONAL ITEMS												
Burn-out BD - Down Scale (Accordance to NAMUR NE43 specification) BU - Up Scale (Accordance to NAMUR NE43 specification)													
Special Procedures	C1 - Degrease Cleaning (Oxygen or Chlorine Service) (15)	cording NACE Standard											
Special Features	Special Features ZZ - User's Specification												
Lower Housing Connection	U0 - With Flush Connection of ¼" NPT (If Supplied with Housing) U1 - With Two Flush Connections of ¼" NPT at 180°	U4 – Without Flush Connection											
Insulator Kit (16)	K0 - Without Kit K1 - With Kit												
Diaphragm Thickness N0 – Default (24) N1 - 0.1mm (11)													

Note - LD300L:

(1) Meets NACE MR - 01 - 75/ISO 15156 recommendations

- (2) Silicone oil not recommended for Oxygen (O2) or Chlorine Service.
- (3) Not applicable for vacuum service (4) Drain/Vent is not applicable.
- (5) O-ring material must be of Viton or Kalrez.
- (6) Maximum pressure 24 bar.
- (7) For remote seal is only available flange in 316 stainless steel- CF8M (ASTM A351) (thread
- (8) Fluorolube fills fluid not available with Monel diaphragm.
- (9) Options not certified for Explosive Atmosphere. (10) Not recommended with extension.
- (11) Item by inquiry.
- (12) Supplied without Gasket.
- (13) Without certification for Explosion proof certification or Intrinsically safe.
- (14) Limited values to 4 1/2 digits; limited unit to 5 characters.
- (15) Degreaser's cleaning is not available for carbon steel flanges
- (16) The insulator kit is applicable with Raised Face (HO) and Smooth Face (H1) with Gasket material.
- T(Teflon) and only for the following models:
- ANSI until #600 . DIN until P40 and JIS until 40K:
- For models with extension the Gasket T (Teflon) it has special share.
- (17) Gasket for housing, available only in Stainless 316.
 (18) Finishing flange faces:
 ANSI B 16.5 / MSS-SP6:
 Raised or Smoth Face with gooved lining: 3.2 to 6.3 μm Ra (125 a 250 μ" AA);
- Small or Large Tongue Face and Small or Large Groove with smooth finishing not exceeding: 3.2 µm Rt (125 µ" AA);
 RTJ ANSB R 16.20 / MSS-SP6:

- RTJ ANSI B 16.20 / MSS-SP6:

 Smooth finishing not exceeding: 1.6 μm Rt (63 μ" AA);

 DIN EN-1092-1:

 Grooved finishing "B1" (PN 10 a PN40): 3.2 a 12.5 μm Ra (125 a 500 μ" AA);

 Smooth finishing "B2" (PN 63 a PN100), "C" (Tongue) e "D" (Groove): 0.8 a 3.2 μm

 Ra (32 a 125 μ" AA).
- DIN 2501 (DIN 2526):
 Smooth finishing "Ε" (PN 160 a PN250): Rz = 16 (3.2 μm Ra (125 μ" AA).
- JIS B2201:
 Grooved finishing 3.2 a 6.3 µm Ra (125 a 250 µ" AA).

- (19) Temperature application range: -40 to 150°C
- (20) Applicable only for:

 - Application of the Community of the Comm
 - 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
 4" ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models.
 - Faces: RF and FF
 - Temperature Limits: +10 to 100°C; +101 to 150°C (by inquiry).
 - Not applicable for diaphragm thickness: N1 0.10mm. Not applicable for use with housing.

- Not applicable for use with nousing.
 Performance with Halar see page 6.22.

 (21) Not available for slip-on flange.

 (22) Not applicable for saline atmosphere.

 (23) IPW / TypeX tested for 200 hours according to NBR 8094 / ASTM B 117 standard.

 (24) Diaphragms of Titanium and Monel available only in 0.1 mm, and diaphragms of Tantalum only in 0.075 mm.
- (25) The inert fluid guarantees safety for Oxygen (0.2) service.

 (26) Certified for use in Explosive Atmosphere (CEPEL and CSA).

 (27) IPX8 tested in 10 meters of water column for 24 hours.

 (28) Ingress Protection:

Product	CEPEL	NEMKO/ EXAM	FM	CSA	NEPSI
LD30X	IP66/68/W	IP66/68/W	Type 4X/6P	Type 4X	IP67

- (29) Certified for use in Explosive Atmosphere (CEPEL, FM, CSA, NEPSI, NEMKO and EXAM). (30) Certified for use in Explosive Atmosphere (CEPEL, NEPSI, NEMKO and EXAM). (31) Not available for integral flange.

Sanitary Differential Pressure Transmitter - LD300S

Description

The **LD300S** is a transmitter for food applications and others, where sanitary connections are necessary.

The process connections can be Threaded or Tri-Clamp, allowing a fast and easy connection and disconnection of the process. The standard of lining of the wet surface is 32 Ra, highly polished, so that the seal is free of the breach not allowing the lodging of the food or bacterium that can infect the process.

The Smar's sanitary equipments (LD300S and SR301S) are supplied according to 3A standard, the sanitary pattern more accepted in the food industry, beverage and pharmaceutical.

For Dimensions of the LD300S see the pages 6.32, 6.33 and 6.36. For Pressure Limits see the Tables of the pages 6.17 and 6.18.

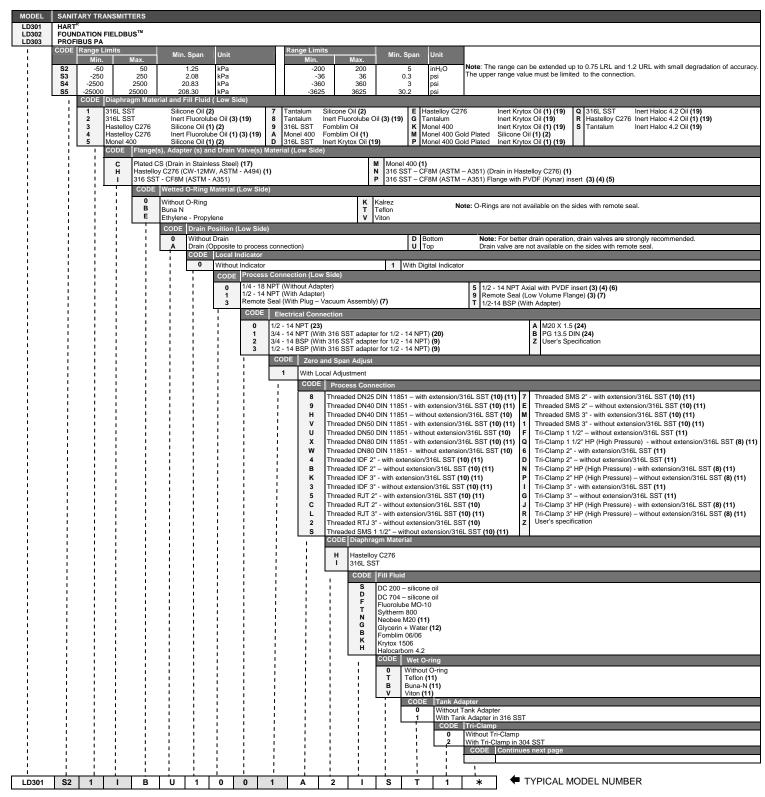

The figures 6.1 and 6.2 below show the LD300S Transmitter with Threaded and Tri-Clamp connection respectively.

Figure 6.1 - LD300S with Threaded Connection

Figure 6.2 - LD300S with Tri - Clamp Connection

^{*} Leave it blank when there are not optional items.

MODEL	SANIT	ARY TR	ANSMITTI	ERS (CON	TINUOUS)										
1	CODE	Flang	e Bolts a	nd Nuts I	Material										
	A0 A1 A2	316 S	ST	Steel (Def	ault) (17) 3 B7M) (1)	(17)		A5	A5 Hastelloy C276						
į	!						es (ada	ters, manifo	anifolds, mounting brackets, etc)						
į	i	D0 D1		NF (Defau				D2	D2 M12 X 1.75						
;	- 1	-		utput Sig											
	-			– 20 mA (Default) 4 wire) (13	,			G3 NAMUR NE43 Extended 4-20 mA (Burnout 3.55 and 22.8 mA)						
-	1				using Mat		(22)								
1 1 1	 	-	H0 Aluminum (Default) (IP/Type) H2 Aluminum for Saline Atmosphere (18) (IPW/TypeX) H3 316 SST – CF8M (ASTM – A351) (IP/Type) H3 316 SST for Saline Atmosphere (18) (IPW/TypeX) H4 Aluminum Copper Free (18) (IPW/TypeX)												
!	1	į		CODI	TAG P	ate									
-	1	į	-	J0 J1	With ta Blank	g, when s	specified	(Default)							
-	1	į	-	J2		ing to use	er's note:	3							
		i	1	1	CODE										
		į	1			Nith PID Nithout F									
	-	į	-	;		DE LO		ation							
	-	į	-		- : -	YO LC	D1: Per	centage (Defa	ıult)		Y3	LCD1: Temperature (Engineering Unit)			
į	-	i	1					ent - I (mA) ssure (Engine	ering Unit)		LCD1: User's Specification (14)				
!	1	ļ	1	}		COD		2 Indication							
:	-	į	-	1 1		YO		2: Percentage 2: Current - I			Y6				
!	-	į	-	1 1	- !	Y		2: Pressure (g Unit)	YU	LCD2: User's Specification (14)			
:	-	į	-	1 1	į	!		Identificat							
	-	į	-	1 1	į	į		FM: XP, IS NEMKO: E			16	Without Certification			
	-	į	-	1 1	į	į	13	CSA: XP, I	S, NI, DI		17	EXAM (DMT): Class I, M1 Ex-ia			
	-	i	-	1	į	į	! I4 ! I5	CEPEL: Ex-c		lemko: Ex-d	18	0 to 20 mA: LD301 (13)			
	-	i	-	1	į	į	!	CODE Pa	inting						
	-	1	-	1	i	į	:			N 6,5 Polyester					
	- !	i	-		į	į	!		ack Polyeste nite Epoxy	er	P9 PC				
į	!		!		1	i			low Polyest	er					
į	:	-	!		1	1									
i		1	<u> </u>	<u> </u>	!	1	 	!	T .	T .					
LD301	A0	D0	G0 I	H0 J0	MO	Y0	Y0	16 P0	*	TYPIC	CALN	MODEL NUMBER			

^{*} Leave it blank when there are not optional items.

	OPTIONAL ITEMS	
Burn-out	BD - Down Scale (Accordance to NAMUR NE43 specification) BU - Up Scale (Accordance to NAMUR NE43 specification)	
Special Procedures	C1 - Degrease Cleaning (Oxygen or Chlorine Service) (15) C2 - For Vacuum Application	C4 - Polishing of the wet parts according to 3A Certification (11) (12) C5 – Mounting according NACE Standard
Special Features	ZZ - User's Specification	
Diaphragm Thickness	N0 - Default N1 - 0.1mm (12)	

- Note LD300S:

 (1) Meets NACE MR-01-75/ISO 15156 recommendations.
 (2) Silicone oil not recommended for Oxygen (O2) or Chlorine Service.
 (3) Not applicable for vacuum service.
 (4) Drain not applicable.
 (5) O-Ring material must be of Viton or Kalrez.
 (6) Maximum pressure 24 bar.
 (7) For remote seal is only available flange in 316 Stainless Steel CF8M (ASTM A351) (thread M12).
 (8) HP High Pressure.
 (9) Options not certified for Explosive Atmosphere.
 (10) Not available for Tri-clamp.
 (11) Compliant with 3A-7403 standard for food and other applications where sanitary connections are required:

 Neobee M2O Fill Fluid

 Finishing wet Face: 0,8 µm Ra (32 µ° AA)

 - Neobee M2O Fill Fluid
 Finishing wet Face: 0,8 μm Ra (32 μ" AA)
 Wet O-Ring: Viton, Buna-N and Teflon

- ver O-Ring: viton, buna-N and Telion

 (12) Item by inquiry.

 (13) Without certification for explosion proof or intrinsically safe.

 (14) Limited values to 4 1/2 digits; limited unit to 5 characters.

 (15) Degrease cleaning is not available for Carbon Steel Flanges.

 (16) Temperature application range: -40 to 140 °C and Tables 5 and 6 pages 6.17 and 6.18.

 (17) Not applicable for saline atmosphere.
- (11) Not applicable for saline atmosphere.
 (18) IPW / TypeX tested for 200 hours according to NBR 8094 / ASTM B 117 standard.
 (19) The inert fluid guarantees safety for Oxygen (O₂) service.
 (20) Certificate for use in Explosive Atmosphere (CEPEL and CSA).
 (21) IPX8 tested in 10 meters of water column for 24 hours.
 (22) Ingress Protection:

Product	CEPEL	NEMKO/ EXAM	FM	CSA	NEPSI
LD30X	IP66/68/W	IP66/68/W	Type 4X/6P	Type 4X	IP67

- (23) Certified for use in Explosive Atmosphere (CEPEL, FM, CSA, NEPSI, NEMKO and EXAM). (24) Certified for use in Explosive Atmosphere (CEPEL, NEPSI, NEMKO and EXAM).

Technical Data

The calibration maximum limit of the remote seal or level transmitter should be the smallest value between the connection pressure limit (Tables 1 to 6) and the upper range limit of the transmitter (URL). See transmitter's manual.

	Pressure Limit (Bar) - ANSI (ASME B 16.5 – 2003) – Table 1													
Temperature °C (°F)	- 29 to 38 (20 to 100)			150 (302)	200 (392)	250 (482)	300 (572)	325 (617)	350 (662)					
150	15.9	15.3	13.3	12.0	11.2	10.5	10.0	9.3	8.4					
300	41.4	40.0	34.8	31.4	29.2	27.5	26.1	25.5	25.1					
600	82.7	80.0	69.6	62.8	58.3	54.9	52.1	51.0	50.1					
900	124.1	120.1	104.4	94.2	87.5	82.4	78.2	76.4	75.2					
1500	206.8	200.1	173.9	157.0	145.8	137.3	130.3	127.4	125.4					
2500	344.7	333.5	289.9	261.6	243.0	228.9	217.2	212.3	208.9					

	Pressure Limit (Bar) - DIN (EN1092-1 / DIN 2501) - Table 2													
Temperature °C (°F)	-10 to 50 (14 to 122)	50 (122)	100 (212)	150 (302)	200 (392)	250 (482)	300 (572)	350 (662)						
10	7.6	7.4	6.3	5.7	5.3	4.9	4.6	4.4						
16	12.3	11.8	10.2	9.2	8.5	7.9	7.4	7.1						
25	19.2	18.5	16.0	14.5	13.3	12.4	11.7	11.1						
40	30.6	29.6	25.5	23.1	21.2	19.8	18.7	17.8						
63	48.3	46.6	40.2	36.4	33.5	31.1	29.5	28.1						
100	76.6	74.0	63.9	57.8	53.1	49.4	46.8	44.5						

	Pressure Limit (Kgf/cm²) - JIS B 2201 – Table 3												
Temperature °C (°F)	120 (248)	220 (428)	300 (572)	350 (662)									
10 K	14.0	12.0	10.0										
20 K	34.0	31.0	29.0	26.0									
40 K	68.0	62.0	57.0	52.0									

	Pressure Limit (Bar) - SR301 R – Table 4
Temperature °C (°F)	25 (77)
2500 psi	172

- The Tables 1,2 and 3 are based on the Norm and are subject to modifications. For more details consult the corresponding Norms;

 The DIN EN1092-1 norm does not assist pressure limits for PN 160 and 250;

 It is necessary verify the application limits of the sealing gasket, because the limits can do unviable the tables above;

 The temperature limits of the fill fluid limit this tables. See Table 2.5, Section2;

 Tables 1, 2 and 4 for 316L e 304L. Stainless Steel.

	Pressure Lir	nit Tri-Clamp (TC) (Bar) – Table	5				
DN	Normal	Pressure	High Pressure (HP)					
DN	20°C (68ºF)	120°C (248ºF)	20°C (68ºF)	120°C (248ºF)				
1.1/2"	34	20	100	60				
2" / DN50	28	17	70	42				
3"	22	13	70	42				

	Pressure Limit for Thread (Bar) – NP – Table 6												
DN	RJT	IDF	SMS	DIN									
DN	120°C (248ºF)	120°C (248ºF)	120°C (248ºF)	140°C (284ºF)									
DN25	10	16	40	40									
1.1/2" / DN40	10	16	40	40									
2" / DN50	10	16	25	25									
3" / DN80	10	10	25	25									

Note - Tables 5 and 6:

Note – Tables 5 and 6:
This Tables are based on the Norm and are subject to modifications. For more details consult the Norm:

- Tri-Clamp (TC) - BS 4825 : Part 3; ISO 2852;

- RJT - BS 4825 : Part 5;

- IDF - BS 4825 : Part 4; ISO 2853;

- SMS – 1145;

- DIN - 11851(Standard OD).

	Application Guide of Sealing Gasket – Table 7 (3, 4 and 7)												
Gasket Material		Factor (P.T) (Bar x ºC) (5)	Ambient Minimum Temperature ° C (°F) (8)		Maximum Temperature ° C (°F) (8)	Maximum Pressure (Bar absolute) (6)	Ph	Hardness (HB)					
	Teflon (PTFE)	2700	_	-210 (-346)	260 (500)	83	0 to 14	_					
No Metallic			Neutral	-240 (-400)	3000 (5432)								
	Flexible Graphite	12000	Oxidant	-240 (-400)	450 (842)	20 (1)	0 to 14	_					
			Vapour -240 (-400) 650 (1202)		650 (1202)	()							
Metallic	Copper	Above 25000	_	_	260 (500)	(2)	_	80					
Wietallic	316L Stainless Steel	ADOVE 25000	_	_	815 (1499)	(2)	_	160					

Note - Table 7:

- Value for gasket without metallic reinforcement.
- According to pressure class referring to Norm (ANSI, DIN and JIS).

 This table does not gasket specification, only indicative guide for application.

 The corrosion analysis is very important for sealing gasket application.

- Factor (P.T) = Pressure (Bar abs.) x Temperature (°C).
 Maximum Pressure Use Continuous.
 For projects of gasket other factors must be considered as the gasket and screw squeezing.
 For maximum and minimum temperatures verify the Limits for Seal/Level filling fluids.

O'Ring Application Guide – Table 8												
Ring Material		Temperature in us Service	Application – Recommended Use and Specification									
	Minimum Temperature ° C (°F)	Maximum Temperature ° C (°F)	Recommended	Not Recommended								
Teflon® (PTFE)	-23 (-10)	232 (450)	General Applications, Excellent resistance to acids, bases, water and amines	To avoid solvents and aromatic fuels.								
Viton	-29 (-20)	205 (400)	Products of Petroleum, Silicone Fluids, Diester Fluids.	Amines, Cetone, Hot Water/Vapor Brake Fluids.								
Buna N	-35 (-31)	135 (275)	General Applications, Products of Petroleum, Silicone Fluids, Fluids to Ethylene Glycol	Acids, Brake Fluids, Ozone, Cetones.								

	O'Ring Materials Guide – Table 9											
Ambient	Teflon® (PTFE)	Viton	Buna N									
Acetic Acid, 30%	S.I.	++	+++									
Acetone	-	-	-									
Air, below 93 °C (200° F)	++++	++++	++++									
Ammonia Gas, Cold	++++	-	++++									
Ammonia Gas, Hot	+++	-	-									
Ammonia, Liquid	++	-	+++									
Carbon Dioxide, Dry	++++	+++	++++									
Carbon Dioxide, Wet	++++	+++	++++									
Carbon Monoxide	++++	++++	++++									
Caustic Soda	++++		+++									
Chloro Dioxide	++	+++	-									
Citric Acid	++++	++++	++++									
Corn Oil	++++	++++	++++									
Cottonseed Oil	++++	++++	++++									
Diesel Oil	++++	++++	++++									
Ethyl Alcohol (Ethanol)	++++	++	++++									
Glycol Ethylene	++++	++++	++++									
Fish Oil	S.I.	++++	++++									
Gasoline	+++	++++	++++									
Glucose	++++	++++	++++									
Hydrogen	S.I.	++++	++++									
Kerosene	+++	++++	++++									
Methane	+++	++++	++++									
Milk	++++	++++	++++									
Mineral Oil	++++	++++	++++									
Olive Oil	++++	++++	++++									
Oxygen, Gas (Hot)	-	++	-									
Oxygen, Liquid	-											
Ozone	++++	++++	-									
Propane	++++	++++	++++									
Propylene Glycol	++++	++++	++++									
Sodium Bicarbonate	++++	++++	++++									
Vapour < 149 °C (300 °F)	+++	+++	-									
Vapour > 149 °C (300 °F)	++	•	-									
Vegetable Oils	++++	++++	++++									
Vinegar	S.I.	+++	+++									
Water	++++	++++	++++									
(++++) Recommen	ded;(+++)Satisfactory;(++)Trans	itory; (-) Not Recommended; (S. I.)	Without Information									

6.19

Diaphragm Hydrogen Migration

The hydrogen in H2 form does not have penetration danger in the diaphragm. However if the hydrogen separates forming ions of hydrogen (H+), the penetration can happen, therefore the spaces between the molecules of the diaphragm material can be larger than the size of the ion.

Inside of the diaphragm, this ion in contact with filling fluid (silicone oils) can be return the H2 form and to be arrested (inflating the diaphragm), causing damages the measurement.

Steps to Facilitate the Migration

- In High Temperatures or High Pressures, the H_2 molecules are excited, generating its break, favoring the migration of the ion (H+);
- Processes of spontaneous generation of electric current for potential difference between flanges;
- Corrosion of the pipe material due to the process fluid, liberating ion (H+); and
- Vapour to the High Temperature can generate corrosion of the diaphragm metal and to liberate ions (H+).

Form to Inhibit the Hydrogen Migration

- Kit of electric insulator, inhibit the galvanic current between flanges; and
- Stainless Steel diaphragms gold plated can aid in the hydrogen migration due to the size of the molecular space to be smaller than the ion space.

Gold Plated Stainless Steel Diaphragm

Resistance to Diaphragm Hydrogen Migration

Diaphragm Material	AISI 316 Gold Plated	AISI 316	Hastelloy C							
Hydrogen Penetration	+++	++	+							
(+++) Excellent Performance, (++) Good Performance, (+) Low Performance.										

Smar Insulator Kit

The Insulator Kit Smar prevents the generation of galvanic current between metals when in contact. The difference of potential between the metals generates this current that flows from the metal with higher potential to the other. This process in the presence of aqueous solution with salts, acids or bases can start the corrosion process, where the corroded metal is always the one with bigger potential (anode).

In the processes, when it is impossible to isolate the two potencialized metals, occurs the generation of galvanic current. This current will form free ions of hydrogen (H+) in one of the solutions, with tendency to start the corrosion and the migration of the Hydrogen to the diaphragm of the Remote Seal or of the Level Transmitter.

The figure 6.3 shows the following parts that constitute the Smar Insulator Kit: Teflon Gasket (6), Nonmetallic Insulating Sleeve (4), Mica Washers (3) and Steel Washers (2).

Smar Insulator Kit Mounting

Mounting step by step:

- 1 Insert all the Nonmetallic Insulating Sleeve (4); in the holes of the Sealed Flange (5);
- 2 Put the Teflon Gasket (6) between the Flanges (5 e 7);
- 3 Insert the Steel Washers (2) and the Mica Washers (3) in the bolts (1)
- 4 Join the Flanges positioning its holes (5 and 7);
- 5 Introduce the bolts in the holes of the flanges (5 and 7) and tighten the flanges with the nuts (8)
- 6 Measure the resistance between the Sealed Flange (5) and the Flange of Process (7) that should be tending to the infinite to check the efficiency of the Insulator Kit.

NOTE

If the studs are used instead of the bolts, obey the same mounting sequence for the items 2, 3 and 4. This Insulator Kit can be applied with raised and flat face flanges.

The Gasket must be made of Teflon when the Smar Insulator Kit is indicated.

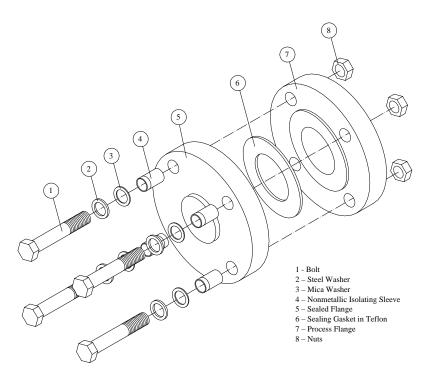


Figure 6.3 - Insulator Kit Mounting

Besides Insulator Kit described previously, there is also the Insulator Kit for Pancake Remote Seals (SR301P) and Pancake with Extension (SR301Q).

The Figure 6.4 shows this kit which is composed by: Bolts (1), Process Flange (2), Sealing Gasket in Teflon (3), Pancake Seal (4), Counter-Flange (5) and Nuts (6). Note that the "support tube" of the SR301P and SR301Q should not have direct contact with the bolts, process flanges and counterflange, avoiding metallic contact.

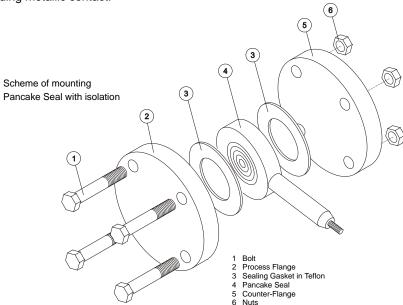


Figure 6.4 - SR301P and SR301Q Electric Insulator Kit

Application with Halar for Seals and Levels

Technical Specification

Halar® is chemically one of the most resistant fluoropolymer. It is a thermoplastic of the melting process manufactured by Solvay Solexis, Inc. For its chemical structure, a 1:1 alternating ethylene copolymer and chlorinetrifluoroethylene, Halar® *(ECTFE)* offers an only combination of useful properties.

The diaphragms in 316L Stainless Steel covered with Halar®, are ideal for applications in contact with aggressive liquids. They offer excellent resistance to the chemic and abrasion with a wide temperature range. Halar® does not contaminate liquids of high purity and it is not affected by most of corrosive chemists, usually found in the industries, including strong minerals, oxidant acids, alkalis, liquid oxygen and some organic solvents.

Halar® is trademark of Solvay Solexis, Inc.

Performance Specification

For the performance specification see the equation below:

[1% SPAN x (URL/SPAN)] - Included temperature error*

Diameters/Capillary Length:

- 2" ANSI B 16.5, DN 50 DIN, JIS 50 A, for seals up to 3 meters of capillary and level models (by inquiry).
- 3" ANSI B 16.5, DN 80 DIN, JIS 80 A, for seals up to 5 meters of capillary and level models.
- 4" ANSI B 16.5, DN 100 DIN, JIS 100 A, for seals up to 8 meters of capillary and level models.

^{*}Temperature Limits:

⁺¹⁰ to 100°C;

⁺¹⁰¹ to 150°C (by inquiry).

TPE – Total Probable Error (Software)

Software to calculate the assembly error of the Pressure Transmitters with the possible connections to the process.

TPE was developed to a fast and effective aid of the products related the pressure measurement. The users are the Applications Engineer and Commercial Areas. The customer can request a report of performance estimate to Smar.

This product allows doing simulations of possible assemblies, verifying important data as the error estimates of the response time, of capillary length analysis and mechanical resistance of diaphragms with temperature variation. See an example in the Figure 6.5.

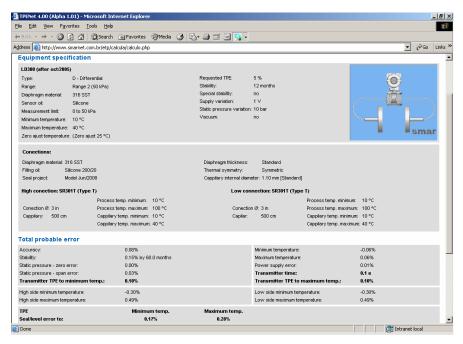
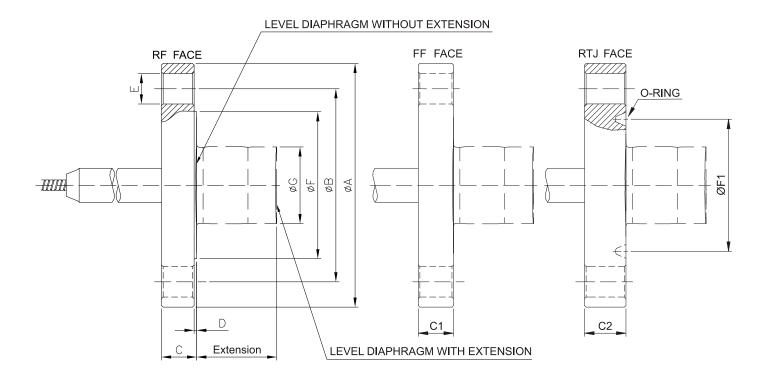
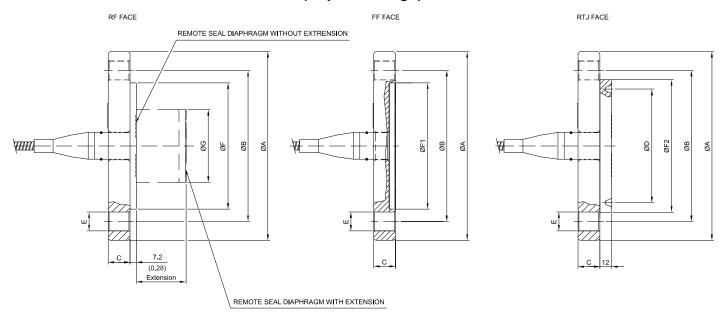



Figure 6.5 - TPE Software Screen

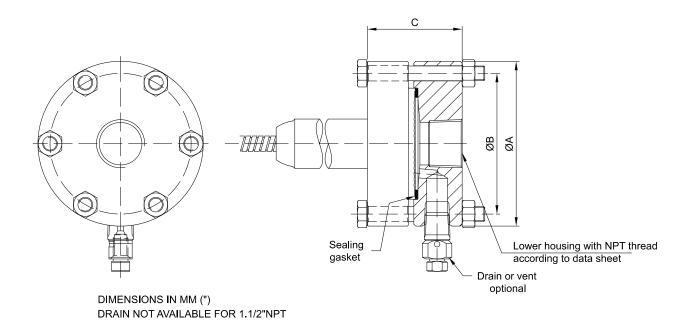
Dimensions


SR301T (RF/FF/RTJ) - "T" Type Flanged Remote Seal and SR301E (RF/FF/RTJ) - Flanged Remote Seal with Extension (Integral Flange)

DIMENSIONS IN mm (in) EXTENSION LENGTH: 0 , 50 , 100 , 150 OR 200 \star FLANGES 1500 AND 2500 WITH EXTENSION HAVE SUPPLYING UNDER CONSULT

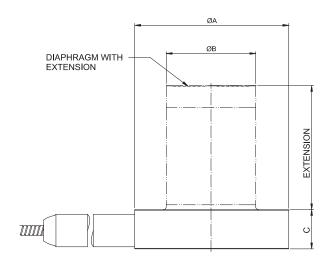
	ANSI-B 16.5 DIMENSIONS																			
DN	CLASS	Α	В			C1 (FF)	_	(RTJ)		D		E	F		F1 (F	RTJ)	ANEL RTJ			# HOLES
	150	108 (4.25)	79.2 (3.12)	_	(0.78)	15 (0.59) 21	(0.83)	1.6	(0.06)	16	(0.63)	50.8	(2)	47.6	(1.87)	R15			4
	300	123.9 (4.88)	88.9 (3.50)	20	(0.78)	18 (0.71	24.4	(0.96)	1.6	(0.06)	19	(0.75)	50.8	(2)	50.8	(2)	R16			4
1"	600	123.9 (4.88)	88.9 (3.50)	24.4	(0.96)	24.4 (0.96) 24.4	(0.96)	6.4	(0.25)	19	(0.75)	50.8	(2)	50.8	(2)	R16			4
	1500	149.3 (5.88)	101.6 (4)	35.4	(1.39)		35.4	(1.39)	6.4	(0.25)	25	(0.98)	50.8	(2)	50.8	(2)	R16			4
	2500	158 (6.22)	108 (4.25)	42	(1.65)		42	(1.65)	6.4	(0.25)	25	(0.98)	50.8	(2)	60.3	(2.37)	R18			4
	150	127 (5)	98.6 (3.88)	20	(0.78)	19 (0.75) 24.4	(0.96)	1.6	(0.06)	16	(0.63)	73.2	(2.88)	65.1	(2.56)	R19	40	(1.57)	4
	300	155.4 (6.12)	114.3 (4.5)	21	(0.83)	21 (0.83	27.4	(1.07)	1.6	(0.06)	22	(0.87)	73.2	(2.88)	68.3	(2.68)	R20	40	(1.57)	4
1.1/2"	600	155.4 (6.12)	114.3 (4.5)	29.3	(1.15)	29.3 (1.15	29.3	(1.15)	6.4	(0.25)	22	(0.87)	73.2	(2.88)	68.3	(2.68)	R20	40	(1.57)	4
	1500	177.8 (7)	124 (4.88)	38.6			38.6	(1.52)	6.4	(0.25)	28	(1.10)	73.2	(2.88)	68.3	(2.68)	R20		(1.57)	4
	2500	203.2 (8)	146 (5.75)		, ,		52.9	(2.08)	6.4	(0.25)	32	(1.26)	73.2	(2.88)	82.6	(3.25)	R23	40	(1.57)	4
	150	152.4 (6)	120.7 (4.75)	+	(0.87)	20 (0.78	25.9	(1.02)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6	(3.25)	R22	48	(1.89)	4
 	300	165.1 (6.5)	127 (5)	22.8		22.8 (0.9)		(1.21)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6	(3.25)	R23	48	(1.89)	8
2"	600	165.1 (6.5)	127 (5)	32.3		32.3 (1.27		(1.27)	6.4	(0.25)	19	(0.75)	91.9	(3.62)	82.6	(3.25)	R23	48	(1.89)	8
⁻	1500	215.9 (8.50)	165 (6.50)	45	(1.77)	02.0	46.5	(1.83)	6.4	(0.25)	25	(0.98)	91.9	(3.62)	95.3	(3.75)	R24		(1.89)	8
}	2500	235 (9.25)	171.5 (6.75)		, ,		59.2	(2.33)	6.4	(0.25)	28	(1.10)	91.9		101.6	(4)	R26		(1.89)	8
	150	190.5 (7.5)	152.4 (6)	24.4	(0.00)	24.4 (0.96		(1.21)	1.6	(0.06)	19	(0.75)	127	(5)	114.3	(4.5)	R29	73	(2.87)	4
3"	300	209.5 (8.25)	168.1 (6.62)		(1.14)	29 (1.14	·	(1.45)	1.6	(0.06)	22	(0.87)	127	(5)			R31	73	(2.87)	8
	600	209.5 (8.25)	168.1 (6.62)			38.7 (1.52	_	(1.58)	6.4	(0.25)	22	(0.87)	127	(5)			R31	73	(2.87)	8
	150	228.6 (9)	190.5 (7.5)	24.4		24.4 (0.96		(1.21)	1.6	(0.06)	19	(0.75)	158	(6.22)	149.2		R36	96	(3.78)	8
4"	300	254 (10)	200 (7.87)	32.2		32.2 (1.27		(1.58)	1.6	(0.06)	22	(0.87)	158	. ,	149.2	- 1	R37	96	(3.78)	8
"	600	273 (10.75)		45	(1.77)	45 (1.77		(1.83)	6.4	(0.25)	25	(1)			149.2		R37	96	(3.78)	8
$\vdash \vdash$	800	2/3 (10.70)	213.9 (0.0)	43	(1.77)					0.20) 01 DIM			158	(0.22)	143.2	(3.07)	1107	90	(0.70)	0
DN	PN	Α	В		С	C1 (FF)	103	- 1 / D		5		E	F							# HOLES
DIV	10/40	115 (4.53)	85 (3.35)	20	(0.78)	20 (0.78)				(0.08)	14	(0.55)	68	(2.67)				 		#110LL3
	63/100	140 (5.51)	100 (3.94)	24	(0.95)	20 (0.70)	1		2	(0.08)	18	(0.71)	68	(2.67)			/			4
25	160	140 (5.51)	100 (3.94)	24	(0.95)			/	2	(0.08)	18	(0.71)	68	(2.67)			/			4
	250	150 (5.91)	105 (4.13)	28	(1.10)				2	(0.08)	22	(0.87)	68	(2.67)			/			4
	10/40	150 (5.91)	110 (4.33)	20	(0.78)	20 (0.78)	-		_	(0.12)	18	(0.71)	88	(3.46)			/	40	(1.57)	4
40			125 (4.92)	26	(1.02)	20 (0.10)	1			(0.12)	22	(0.87)	88	(3.46)			/		(1.57)	4
40	63/100		125 (4.92)	28	(1.10)				_	(0.12)	22	(0.87)	88	(3.46)			/	_	(1.57) (1.57)	4
	160 250	170 (6.69) 185 (7.28)	135 (5.31)	34	(1.34)					(0.12)	26	(1.02)	88	(3.46)				-	(1.57)	4
	10/40	165 (6.50)	125 (4.92)	20	(0.78)	22 (0.86)	-		3	(0.12)	18	(0.71)	102	(4.01)				48	(1.89)	4
	63	180 (7.09)	135 (5.31)	26	(1.02)	22 (0.00)	\forall	1	3	(0.12)	22	(0.87)	102	(4.01)			/	48	(1.89)	4
50	100	195 (7.68)	145 (5.71)	28	(1.12)	/		/		(0.12)	26	(1.02)	102	(4.01)		/		48	(1.89)	4
	160			30	(1.12)		1 /			(0.12)	26	(1.02)	102	(4.01)		/			(1.89)	4
					(1.50)		/			(0.12)	26	(1.02)	102	(4.01)		/			(1.89)	8
$\vdash \vdash$	250 10/40	200 (7.87)	150 (5.91) 160 (6.3)	38	(0.95)	24 (0.95)	/		3	(0.12)	18	(0.71)	138	(5.43)		/		73	(2.87)	8
。		, ,	` '		(1.12)	24 (0.95)	1		3	(0.12)		(0.71)		(5.43)		/		73	(2.87)	8
80	63	215 (8.46)	170 (6.69)	28	(1.12)	/	/				22		138		/	•			(2.87)	
	100	230 (9.06)	180 (7.09)	_						(0.12)		(1.02)		(5.43)	/				(2.87)	8
$\vdash \vdash$	160	230 (9.06)	180 (7.09)	+	(1.42)	<u> </u>	4/			(0.12)		(1.02)		(5.43)	/					8
100	10/16	220 (8.67)	180 (7.08)	20	(0.78)		/			(0.12)	18	(0.71)		(6.22)	/			96	(3.78)	8
	25/40	235 (9.25)	190 (7.5)	24	(0.95)		<u> </u>	0.00		(0.12)		(0.87)	162	(6.38)	V			96	(3.78)	8
<u> </u>	01.455		-				J	S B 22		MENSIC			-					1		".uc: =c
L	CLASS	A (5.5)	B (4.12		C (1.02)					(0.08)		(0.7E)		(2.2)				_	(1 57)	# HOLES
40A	20K	140 (5.5)	105 (4.13	_	(1.02)					(80.0)	19	(0.75)		(3.2)					(1.57)	4
50A	10K	155 (6.1)	120 (4.72		(1.02)	-	/			(80.0)	19	(0.75)		(3.78)				48	(1.89)	4
lder	40K	165 (6.5)	130 (5.12		(1.02)					(80.0)	19	(0.75)		(4.13)		/		48	(1.89)	8
80A	10K	185 (7.28)	150 (5.9)	_	(1.02)	/				(80.0)	19	(0.75)		(4.96)				73	(2.87)	8
	20K	200 (7.87)	160 (6.3)		(1.02)					(80.0)	19	(0.75)	132	(5.2)	/	/		73	(2.87)	8
100A	10K	210 (8.27)	175 (6.89) 26	(1.02)	1/			2	(0.08)	19	(0.75)	151	(5.95)	/			96	(3.78)	8

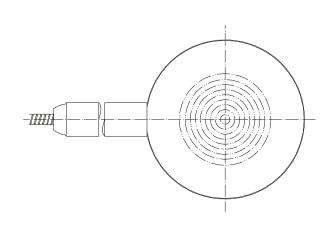
SR301T (RF/FF/RTJ) - "T" Type Flanged Remote Seal and SR301E (RF/FF/RTJ) - Flanged Remote Seal with Extension (Slip-on Flange)



							Α	NSI-B	16.5 [DIME	NSIONS	S							
DN	CLASS	/	4	В	3		С		D		Е		RF)	F1 (FF)		F2 (RTJ)	(3	# HOLES
1"	150	108	(4.25)	79.4	(3.16)	14.3	(0.56)			16	(0.63)	50.8	(2)	50.8	(2)	-		-	4
'	300/600	124	(4.88)	8.9	(3.5)	17.5	(0.69)			19	(0.75)	50.8	(2)	50.8	(2)	-		-	4
1 1/2"	150	127	(5)	98.4	(3.87)	17.5	(0.69)		•	16	(0.63)	73	(2.87)	73	(2.87)	-	40	(1.57)	4
1 1/2	300/600	156	(6.14)	114.3	(4.5)	22.2	(0.87)			22	(0.87)	73	(2.87)	73	(2.87)	-	40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	17.5	(0.69)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	101.6 (4.00)	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	20.7	(0.8)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9 (4.25)	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	25.4	(1)	82.6	(3,25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9 (4.25)	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	22.3	(0.87)	114.3	(4.50)	19	(0.75)	127	(5)	127	(5)	133.4 (5.25)	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	27	(1.06)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1 (5.75)	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	31.8	(1.25)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1 (5.75)	73	(2.87)	8
	150	228.6	(9)	190.5	(7.5)	22.3	(0.87)	149.2	(5.87)	19	(0.75)	158	(6.22)	158	(6.22)	171.5 (6.75)	89	(3.5)	8
4"	300	254	(10)	200	(7.87)	30.2	(1.18)	149.2	(5.87)	22	(0.87)	158	(6.22)	158	(6.22)	174.6 (6.87)	89	(3.5)	8
	600	273	(10.75)	215.9	(8.5)	38.1	(1.5)	149.2	(5.87)	25	(1)	158	(6.22)	158	(6.22)	174.6 (6.87)	89	(3.5)	8

				EN	1092-1	l / DI	N2501	DII	MENSI					
DN	PN	,	Ą	В		С		E		F		G		# HOLES
25	10/40	115	(4.53)	85	(3.35)	18	(0.71)	14	(0.55)	68 (2.68)		-		4
40	10/40	150	(5.91)	110	(4.33)	18	(0.71)	18	(0.71)	88	(3.46)	73	(2.87)	4
50	10/40	165	(6.50)	125	(4.92)	20	(0.78)	18	(0.71)	102	(4.01)	48	(1.89)	4
80	10/40	200	(7.87)	160	(6.30)	24	(0.95)	18	(0.71)	138	(5.43)	73	(2.87)	8
400	10/16	220	(8.67)	180	(7.08)	20	(0.78)	18	(0.71)	158	(6.22)	89	(3.5)	8
100	25/40	235	(9.25)	190	(7.50)	24	(0.95)	22	(0.87)	162	(6.38)	89	(3.5)	8

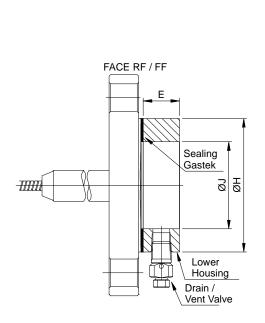

- EXTENSIONS LENGTH IN mm(in): 0, 50 (1.96), 100 (3.93), 150 (5.9) or 200 (7.87)
- FOR 1" AND DN25 THE EXTENSION LENGTH IS 0 mm DIMENSIONS IN mm(in)

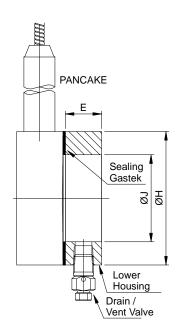

SR301R - Threaded Remote Seal

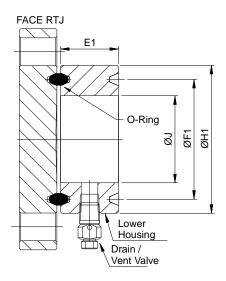
DIMENSIONS SR301R - TABLE 10											
LIMIT	A	В	С	# HOLES							
2500PSI	89 (3.50)	76 (2.99)	51 (2.01)	6							

SR301P – Pancake Remote Seal without Extension and SR301Q – Pancake Remote Seal with Extension

WITH EXTENSION

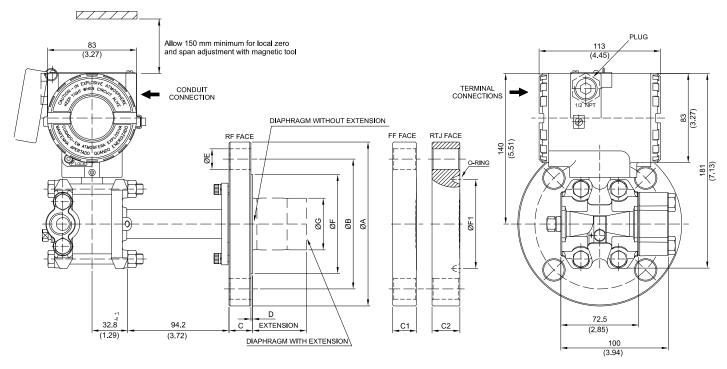

	ANSI-B 16.5												
DN	CLASS		С	Ø	В	ØA							
1.1/2"	150600	30	(1.18)	39.5	(1.55)	73.2	(2.88)						
2"	150600	30	(1.18)	47.5	(1.87)	92	(3.62)						
3"	150600	30	(1.18)	72.5	(2.85)	127	(5)						
4"	150600	30	(1.18)	95.5	(3.76)	157.2	(6.19)						
		ΕN	1 1092-1	/ DIN2	2501								
DN	PN		С	Ø	В	Ø	A						
40	1040	30	(1.18)	39.5	(1.55)	88	(3.46)						
50	1040	30	(1.18)	47.5	(1.87)	101.6	(4)						
80	1040	30	(1.18)	72.5	(2.85)	138	(5.43)						
100	1040	30	(1.18)	95.5	(3.76)	162	(6.38)						


WITHOUT EXTENSION


1A	ANSI-B16.5 DIMENSIONS											
DN	CLASS		С	Ø.	A							
1.1/2"	1502500	32	(1.26)	73.2	(2.88)							
2"	1502500	32	(1.26)	92	(3.62)							
3"	1502500	32	(1.26)	127	(5)							
4"	1502500	32	(1.26)	157.2	(6.19)							
	EN 1092	-1 / C	IN2501									
DN	PN		С	Ø	Α							
40	10100	32	(1.26)	88	(3.46)							
50	10100	32	(1.26)	101.6	(4)							
80	10100	32	(1.26)	138	(5.43)							
100	10100	32	(1.26)	162	(6.38)							
	JIS B 220	2 DI	MENS	IONS								
	CLASS		С	Ø.	A							
40A	20K	32	(1.26)	81	(3.19)							
50A	10K	32	(1.26)	96	(3.78)							
30A	40K	32	(1.26)	105	(4.13)							
004	10K	32	(1.26)	126	(4.96)							
80A	20K	32	(1.26)	132	(5.19)							
100A	10K	32	(1.26)	151	(5.94)							

DIMENSIONS IN MM(")
EXTENSION LENGTH: 0, 50, 100, 150 OR 200
*FLANGES 1500 AND 2500 WITH EXTENSION HAVE SUPPLYING UNDER CONSULT

Lower Housing

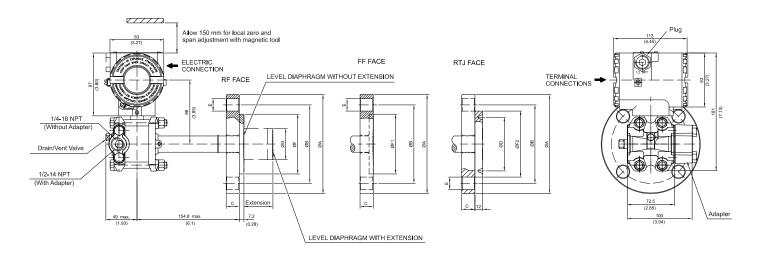

DIMENSIONS IN MM (")

	ANSI-	3 16.5DIMENSI	ONS-FACE RF	/FF	
DN	CLASS	Н	J		Ē
DIN	CLASS		J	1/4"NPT	1/2"NPT
1"		50,8 (2,00)	35 (1,38)	25	35
1.1/2"		73,2 (2,88)	48 (1,89)	25	35
2"	ALL	91,9 (3,62)	60 (2,36)	25	35
3"		127 (5,00)	89 (3,50)	25	35
4"		158 (6,22)	115 (4,53)	25	35
DIN EN10	92-1/ DIN2501/2	2526 FORM D D	IMENSIONS		
DN	PN	Н	J		
25		68 (2,68)	35 (1,38)	25	35
40]	88 (3,46)	48 (1,89)	25	35
50	ALL	102 (4,02)	60 (2,36)	25	35
80		138 (5,43)	89 (3,50)	25	35
100		158 (6,22)	115 (4,53)	25	35
	JIS B 2202 DI	MENSIONS			
DN	CLASS	Н	J		
40A	20K	81 (3,19)	48 (1,89)	25	35
504	10K	96 (3,78)	60 (1,36)	25	35
50A	40K	105 (4,13)	60 (1,36)	25	35
904	10K	126 (4,96)	89 (3,50)	25	35
OUA	80A 20K		89 (3,50)	25	35
100A	10K	151 (5,94)	115 (4,53)	25	35

DIMENSIONS IN MM (")

	ANSI-E	3 16.5 DIME	ENSIONS	S - FACE R	TJ		
DNI	01.400	F4	0 5110	114		E	1
DN	CLASS	F1	O-RING	H1	J	1/4"NPT	1/2"NPT
	150	47,6 (1,87)	R15	63,5 (2,50)	35 (1,38)	40	45
	300	50,8 (2,00)	R16	70 (2,75)	35 (1,38)	40	45
1"	600	50,8 (2,00)	R16	70 (2,75)	35 (1,38)	40	45
	1500	50,8 (2,00)	R16	71,5 (2,81)	35 (1,38)	40	45
	2500	60,3 (2,37)	R18	73 (2,88)	35 (1,38)	40	45
	150	65,1 (2,56)	R19	82,5 (3,25)	48 (1,89)	40	45
	300	68,3 (2,69)	R20	90,5 (3,56)	48 (1,89)	40	45
1.1/2"	600	68,3 (2,69)	R20	90,5 (3,56)	48 (1,89)	40	45
	1500	68,3 (2,69)	R20	92 (3,62)	48 (1,89)	40	45
	2500	82,6 (3,25)	R23	114 (4,50)	48 (1,89)	40	45
	150	82,6 (3,25)	R22	102 (4,00)	60 (2,36)	40	45
	300	82,6 (3,25)	R23	108 (4,25)	60 (2,36)	40	45
2"	600	82,6 (3,25)	R23	108 (4,25)	60 (2,36)	40	45
	1500	95,3 (3,75)	R24	124 (4,88)	60 (2,36)	40	45
	2500	101,6 (4,00)	R26	133 (5,25)	60 (2,36)	40	45
	150	114,3 (4,50)	R29	133 (5,25)	89 (3,50)	40	45
3"	300	123,8 (4,87)	R31	146 (5,75)	89 (3,50)	40	45
	600	123,8 (4,87)	R31	146 (5,75)	89 (3,50)	40	45
	150	149,2 (5,87)	R36	171 (6,75)	115 (4,53)	40	45
4"	300	149,2 (5,87)	R37	175 (6,88)	115 (4,53)	40	45
	600	149,2 (5,87)	R37	175 (6,88)	115 (4,53)	40	45

LD300L (RF/FF/RTJ) – Level Transmitter (Integral Flange)

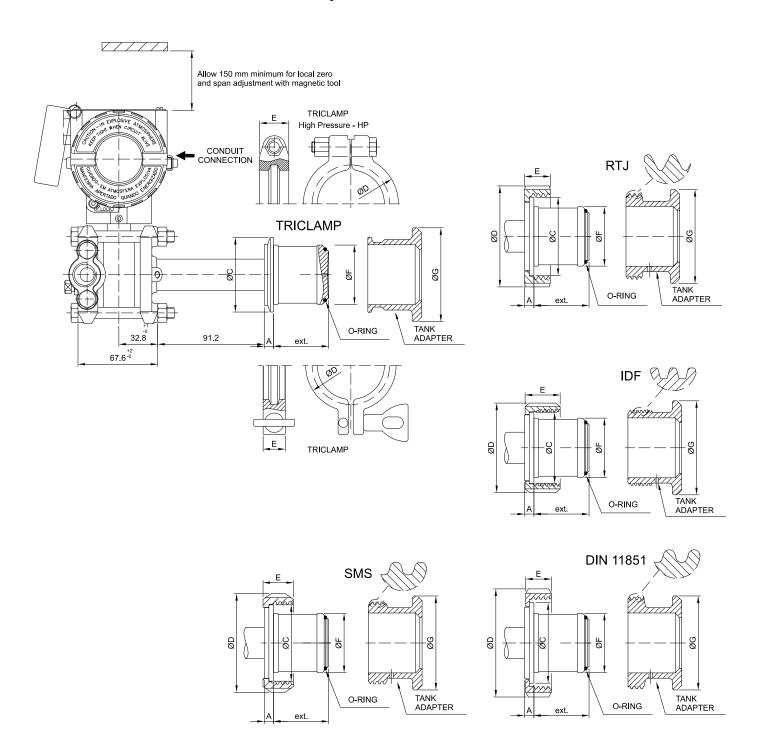


NOTE

- -EXTENSION LENGTH IN (mm): 0, 50, 100, 150 OR 200
- -DIMENSIONS IN mm (in)

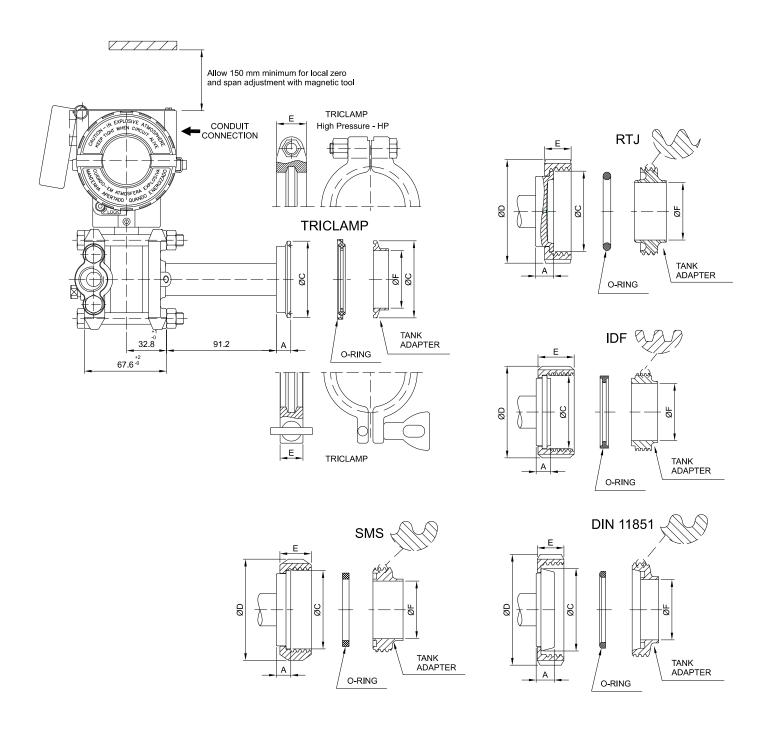
									ANSI-B 16.	5 D	IMENS	IONS								
DN	CLASS	/	4	E	3	C (RF)	C1 (FF)	C2 (RTJ)	D	(RF)		E	F (R	F)	F1 (RTJ)	ANEL RTJ		G	# HOLES
	150	127	(5)	98.6	(3.88)	20	(0.78)	19 (0.75)	24.4 (0.96)	1.6	(0.06)	16	(0.63)	73.2	(2.88)	65.1 (2.56)	R19	40	(1.57)	4
1.1/2"	300	155.4	(6.12)	114.3	(4.5)	21	(0.83)	21 (0.83)	27.4 (1.07)	1.6	(0.06)	22	(0.87)	73.2	(2.88)	68.3 (2.68)	R20	40	(1.57)	4
	600	155.4	(6.12)	114.3	(4.5)	29.3	(1.15)	29.3 (1.15)	29.3 (1.15)	6.4	(0.25)	22	(0.87)	73.2	(2.88)	68.3 (2.68)	R20	40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	22	(0.87)	20 (0.78)	25.9 (1.02)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R22	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	22.8	(0.9)	22.8 (0.89)	30.8 (1.21)	1.6	(0.06)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R23	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	32.3	(1.27)	32.3 (1.27)	32.3 (1.27)	6.4	(0.25)	19	(0.75)	91.9	(3.62)	82.6 (3.25)	R23	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	24.4	(0.96)	24.4 (0.96)	30.7 (1.21)	1.6	(0.06)	19	(0.75)	127	(5)	114.3 (4.50)	R29	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	29	(1.14)	29 (1.14)	36.9 (1.45)	1.6	(0.06)	22	(0.87)	127	(5)	123.8 (4.87)	R31	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	38.7	(1.52)	38.7 (1.52)	40.2 (1.58)	6.4	(0.25)	22	(0.87)	127	(5)	123.8 (4.87)	R31	73	(2.87)	8
	150	228.6	(9)	190.5	(7.5)	24.4	(0.96)	24.4 (0.96)	30.7 (1.21)	1.6	(0.06)	19	(0.75)	158	(6.22)	149.2 (5.87)	R36	96	(3.78)	8
4"	300	254	(10)	200	(7.87)	32.2	(1.27)	32.2 (1.27)	40.2 (1.58)	1.6	(0.06)	22	(0.87)	158	(6.22)	149.2 (5.87)	R37	96	(3.78)	8
	600	273	(10.75)	215.9	(8.5)	45	(1.77)	45 (1.77)	46.5 (1.83)	6.4	(0.25)	25	(1)	158	(6.22)	149.2 (5.87)	R37	96	(3.78)	8
EN 1092-1 DIMENSIONS																				
DN	PN	A		В		C (RF)	C1 (FF)			D		E	F (R	F)			1	G	# HOLES
DN40	10/40	150	(5.9)	110	(4.33)	20	(0.78)		/	3	(0.12)	18	(0.71)		(3.46)			40	(1.57)	4
DN50	10/40	165	(6.5)	125	(4.92)	20	(0.78)	22 (0.86)		3	(0.12)	18	(0.71)		(4.01)			48	(1.89)	4
DN80	10/40	200	(7.87)	160	(6.3)	24	(0.95)	24 (0.94)	/	3	(0.12)	18	(0.71)	138	(5.43)	/		73	(2.87)	8
DN100	10/16	220	(8.67)	180	(7.08)	20	(0.78)		1/	3	(0.12)	18	(0.71)		(6.22)			96	(3.78)	8
	25/40	235	(9.25)	190	(7.5)	24	(0.95)		/	3	(0.12)	22	(0.87)	162	(6.38)			96	(3.78)	8
									JIS B 22	02 E	DIMENS	SIONS	3							
DN	CLASS	A		В			<u> </u>				D		E	F (R				,	G	# HOLES
40A	20K	140	(5.5)	105	(4.13)	26	(1.02)			2	(0.08)	19	(0.75)		(3.2)			40	(1.57)	4
50A	10K	155	(6.1)	120	(4.72)	26	(1.02)			2	(0.08)	19	(0.75)		(3.78)			48	(1.89)	4
	40K	165	(6.5)	130	(5.12)	26	(1.02)			2	(0.08)	19	(0.75)		(4.13)			48	(1.89)	8
80A	10K	185	(7.28)	150	(5.9)	26	(1.02)		/	2	(0.08)	19	(0.75)		(4.96)			73	(2.87)	8
	20K	200	(7.87)		(6.3)	26	(1.02)			2	(0.08)	19	(0.75)		(5.2)			73	(2.87)	8
100A	10K	210	(8.27)	175	(6.89)	26	(1.02)			2	(0.08)	19	(0.75)	151	(5.95)	/		96	(3.78)	8

LD300L (RF/FF/RTJ) - Level Transmitter (Slip-on Flange)

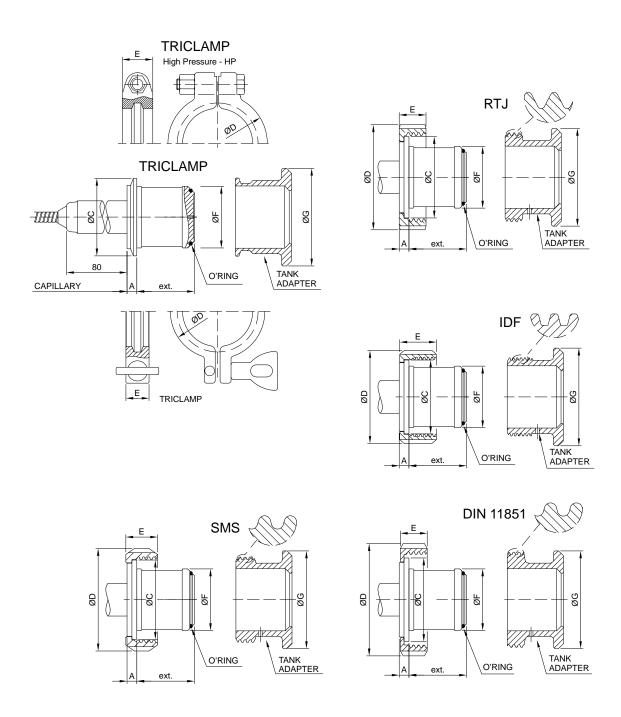

							Al	NSI-B	16.5	DIME	NSIONS	3							
DN	CLASS	<i>A</i>	4	E	3		3	1)		E	F (F	RF)	F1 (FF)	F2 (RTJ)	(3	# HOLES
1"	150	108	(4.25)	79.4	(3.16)	14.3	(0.56)		-	16	(0.63)	50.8	(2)	50.8	(2)	-		-	4
'	300/600	124	(4.88)	88.9	(3.5)	17.5	(0.69)		-	19	(0.75)	50.8	(2)	50.8	(2)	-		-	4
1 1/2"	150	127	(5)	98.4	(3.87)	17.5	(0.69)		-	16	(0.63)	73	(2.87)	73	(2.87)	-	40	(1.57)	4
1 1/2	300/600	156	(6.14)	114.3	(4.5)	22.2	(0.87)		-	22	(0.87)	73	(2.87)	73	(2.87)	-	40	(1.57)	4
	150	152.4	(6)	120.7	(4.75)	17.5	(0.69)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	101.6 (4.00)	48	(1.89)	4
2"	300	165.1	(6.5)	127	(5)	20.7	(8.0)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9 (4.25)	48	(1.89)	8
	600	165.1	(6.5)	127	(5)	25.4	(1)	82.6	(3.25)	19	(0.75)	92	(3.62)	92	(3.62)	107.9 (4.25)	48	(1.89)	8
	150	190.5	(7.5)	152.4	(6)	22.3	(0.87)	114.3	(4.50)	19	(0.75)	127	(5)	127	(5)	133.4 (5.25)	73	(2.87)	4
3"	300	209.5	(8.25)	168.1	(6.62)	27	(1.06)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1 (5.75)	73	(2.87)	8
	600	209.5	(8.25)	168.1	(6.62)	31.8	(1.25)	123.8	(4.87)	22	(0.87)	127	(5)	127	(5)	146.1 (5.75)	73	(2.87)	8
	150	228.6	(9)	190.5	(7.5)	22.3	(0.87)	149.2	(5.87)	19	(0.75)	158	(6.22)	158	(6.22)	171.5 (6.75)	89	(3.5)	8
4"	300	254	(10)	200	(7.87)	30.2	(1.18)	149.2	(5.87)	22	(0.87)	158	(6.22)	158	(6.22)	174.6 (6.87)	89	(3.5)	8
	600	273	(10.75)	215.9	(8.5)	38.1	(1.5)	149.2	(5.87)	25	(1)	158	(6.22)	158	(6.22)	174.6 (6.87)	89	(3.5)	8

	EN 1092-1 / DIN2501									DIMENSIONS - RF/ FF					
DN	PN	,	4	E	В		С		E	F		G		# HOLES	
25	10/40	115	(4.53)	85	(3.35)	18	(0.71)	14	(0.55)	68	(2.68)		-	4	
40	10/40	150	(5.91)	110	(4.33)	18	(0.71)	18	(0.71)	88	(3.46)	73	(2.87)	4	
50	10/40	165	(6.50)	125	(4.92)	20	(0.78)	18	(0.71)	102	(4.01)	48	(1.89)	4	
80	10/40	200	(7.87)	160	(6.30)	24	(0.95)	18	(0.71)	138	(5.43)	73	(2.87)	8	
400	10/16	220	(8.67)	180	(7.08)	20	(0.78)	18	(0.71)	158	(6.22)	89	(3.5)	8	
100	25/40	235	(9.25)	190	(7.50)	24	(0.95)	22	(0.87)	162	(6.38)	89	(3.5)	8	

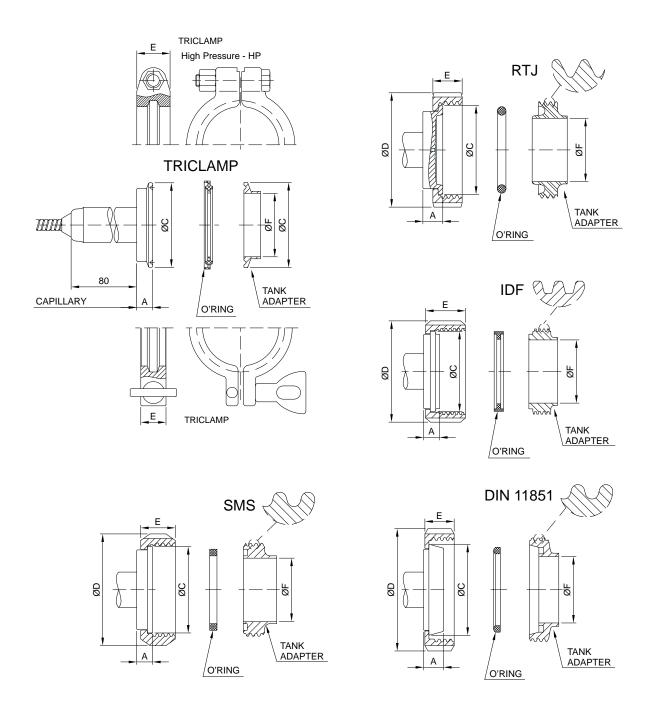
NOTES:


- -EXTENSION LENGTH IN mm(in): 0, 50 (1.96), 100 (3.93), 150(5.9) or 200 (7.87) -FOR 1" AND DN25 THE EXTENSION LENGTH IS 0 mm -DIMENSIONS IN mm(in)

LD300S - Sanitary Transmitter with Extension


Dimensions see Table 11

LD300S - Sanitary Transmitter without Extension


Dimensions see Table 11

SR301S - Sanitary Remote Seal with Extension

Dimensions see Table 11

SR301S - Sanitary Remote Seal without Extension

Dimensions see Table 11

Table 11: Dimensions relative to pages 6.32, 6.33, 6.34 and 6.35.

	SR	301S / LD3	300S				
CONNECTION WITHOUT			Dime	nsions in m	nm (")		
EXTENSION	Α	øс	ØD	E	ØF	ØG	EXT.
Tri-Clamp DN50 - without extension	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	47.5 (1.87)	_	_
Tri-Clamp - 1 1/2" - without extension	12 (0.47)	50 (1.96)	61 (2.4)	18 (0.71)	35 (1.38)	_	_
Tri-Clamp - 1 1/2" HP - without extension	12 (0.47)	50 (1.96)	66 (2.59)	25 (0.98)	35 (1.38)	_	_
Tri-Clamp - 2" - without extension	12 (0.47)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	47.6 (1.87)	_	_
Tri-Clamp - 2" HP - without extension	12 (0.47)	63.5 (2.5)	81 (3.19)	25 (0.98)	47.6 (1.87)	_	_
Tri-Clamp - 3" - without extension	12 (0.47)	91 (3.58)	110 (4.33)	18 (0.71)	72 (2.83)	_	_
Tri-Clamp - 3" HP - without extension	12 (0.47)	91 (3.58)	115 (4.53)	25 (0.98)	72 (2.83)	_	_
Threaded DN40 - DIN 11851 - without extension	13 (0.51)	56 (2.2)	78 (3.07)	21 (0.83)	38 (1.5)	_	_
Threaded DN50 - DIN 11851 - without extension	15 (0.59)	68.5 (2.7)	92 (3.62)	22 (0.86)	50 (1.96)	_	_
Threaded DN80 - DIN 11851 - without extension	16 (0.63)	100 (3.94)	127 (5)	29 (1.14)	81 (3.19)	_	_
Threaded SMS - 1 1/2" - without extension	12 (0.47)	55 (2.16)	74 (2.91)	25 (0.98)	35 (1.38)	_	_
Threaded SMS - 2" - without extension	12 (0.47)	65 (2.56)	84 (3.3)	26 (1.02)	48.6 (1.91)	_	_
Threaded SMS - 3" - without extension	12 (0.47)	93 (3.66)	113 (4.45)	32 (1.26)	73 (2.87)	_	_
Threaded RJT - 2" - without extension	15 (0.59)	66.7 (2.63)	86 (3.38)	22 (0.86)	47.6 (1.87)	_	_
Threaded RJT - 3" - without extension	15 (0.59)	92 (3.62)	112 (4.41)	22.2 (0.87)	73 (2.87)	_	_
Threaded IDF - 2" - without extension	12 (0.47)	60.5 (2.38)	76 (2.99)	30 (1.18)	47.6 (1.87)	_	_
Threaded IDF - 3" - without extension	12 (0.47)	87.5 (3.44)	101.6 (4)	30 (1.18)	73 (2.87)	_	_

	SR	301S / LD	300S				
CONNECTION WITH			Dime	nsions in m	nm (")		
EXTENSION	Α	ØС	ØD	E	ØF	ØG	EXT.
Tri-Clamp DN50 - with extension	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	50.5 (1.99)	80 (3.15)	48 (1.89)
Tri-Clamp DN50 HP - with extension	8 (0.315)	63.5 (2.5)	81 (3.19)	25 (0.98)	50.5 (1.99)	80 (3.15)	48 (1.89)
Tri-Clamp - 2" - with extension	8 (0.315)	63.5 (2.5)	76.5 (3.01)	18 (0.71)	50.5 (1.99)	80 (3.15)	48 (1.89)
Tri-Clamp - 2" HP - with extension	8 (0.315)	63.5 (2.5)	81 (3.19)	25 (0.98)	50.5 (1.99)	80 (3.15)	48 (1.89)
Tri-Clamp - 3" - with extension	8 (0.315)	91 (3.58)	110 (4.33)	18 (0.71)	72.5 (2.85)	100 (3.94)	50 (1.96)
Tri-Clamp - 3" HP - with extension	8 (0.315)	91 (3.58)	115 (4.53)	25 (0.98)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded DN25 - DIN 11851 - with extension	6 (0.24)	47.5 (1.87)	63 (2.48)	21 (0.83)	43.2 (1.7)	80 (3.15)	26.3 (1.03)
Threaded DN40 - DIN 11851 - with extension	8 (0.315)	56 (2.2)	78 (3.07)	21 (0.83)	50.5 (1.99)	80 (3.15)	48 (1.89)
Threaded DN50 - DIN 11851 - with extension	8 (0.315)	68.5 (2.7)	92 (3.62)	22 (0.86)	50.5 (1.99)	80 (3.15)	48 (1.89)
Threaded DN80 - DIN 11851 - with extension	8 (0.315)	100 (3.94)	127 (5)	29 (1.14)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded SMS - 2" - with extension	8 (0.315)	65 (2.56)	84 (3.3)	26 (1.02)	50.5 (1.99)	80 (3.15)	48 (1.89)
Threaded SMS - 3" - with extension	8 (0.315)	93 (3.66)	113 (4.45)	32 (1.26)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded RJT - 2" - with extension	8 (0.315)	66.7 (2.63)	86 (3.38)	22 (0.86)	50.5 (1.99)	80 (3.15)	48 (1.89)
Threaded RJT - 3" - with extension	8 (0.315)	92 (3.62)	112 (4.41)	22.2 (0.87)	72.5 (2.85)	100 (3.94)	50 (1.96)
Threaded IDF - 2" - with extension	8 (0.315)	60.5 (2.38)	76.2 (3)	30 (1.18)	50.5 (1.99)	80 (3.15)	48 (1.89)
Threaded IDF - 3" - with extension	8 (0.315)	87.5 (3.44)	101.6 (4)	30 (1.18)	72.5 (2.85)	100 (3.94)	50 (1.96)

Appendix A

smar		ervice Requ Remote Sea			Proposal No.:							
Company:		Unit:			Invoice:							
	COMMERCIAL CONTACT				INICAL CONTACT							
Full Name:			Full Name:									
Function:			Function:									
Phone:	Exte	ension:	Phone:			Extension:						
Fax:			Fax:									
Email:		EQ. UDA	Email:									
Model:			MENT DATA erial Number:		Sensor Number:							
		PROCI	ESS DATA									
Process Fluid:		rkoci	LOO DATA									
Calibration Range	e Ambient Temperatur	re (°C)	Process Te	emperature (°C)	Proce	ss Pressure						
Min: Max:	Min: Max:	ı	Min:	Max:	Min:	Max:						
	Static Pressure			,	/acuum							
Min:	Max:	ı	Min:		Max:							
Normal Operation Time:		ı	Failure Date:		<u> </u>							
	(Please, describe the obs		DESCRIPTION		o oto)							
		OBSEF	RVATIONS									
		USER IN	FORMATION									
Company:												
Contact:			Title:		Section:							
Phone:	Extension:		E-mail:									
Date:			Signature:									
			-									
For warranty or non-wawww.smar.com/contactus.	ırranty repair, please contact youasp.	ur representa	tive. Further	information about a	address and contac	cts can be found on						

SMAR WARRANTY CERTIFICATE

- SMAR guarantees the equipment of its own manufacture for a period of 24 (twenty four)
 months, starting on the day the invoice is issued. The guarantee is effective regardless of the
 day the product was installed. Third-party equipment and software are not included in this Term
 of Guarantee and Smar does not offer any guarantee or declaration in the name of the
 manufacturer. Any guarantees related to these products are the supplier or licenser
 responsibility.
- SMAR products are guaranteed against any defect originating from manufacturing, mounting, whether of a material or manpower nature, provided that the technical analysis reveals the existence of a quality failure liable to be classified under the meaning of the word, duly verified by the technical team within the warranty terms.
- 3. Exceptions are proven cases of inappropriate use, wrong handling or lack of basic maintenance compliant to the equipment manual provisions. SMAR does not guarantee any defect or damage caused by an uncontrolled situation, including but not limited to negligence, user imprudence or negligence, natural forces, wars or civil unrest, accidents, inadequate transportation or packaging due to the user's responsibility, defects caused by fire, theft or stray shipment, improper electric voltage or power source connection, electric surges, violations, modifications not described on the instructions manual, and/or if the serial number was altered or removed, substitution of parts, adjustments or repairs carried out by non-authorized personnel; inappropriate product use and/or application that cause corrosion, risks or deformation on the product, damages on parts or components, inadequate cleaning with incompatible chemical products, solvent and abrasive products incompatible with construction materials, chemical or electrolytic influences, parts and components susceptible to decay from regular use, use of equipment beyond operational limits (temperature, humidity, etc.) according to the instructions manual. In addition, this Warranty Certificate excludes expenses with transportation, freight, insurance, all of which are the customer's responsibility.
- 4. For warranty or non-warranty repair, please contact your representative.

Further information about address and contacts can be found on www.smar.com/contactus.asp

- 5. In cases needing technical assistance at the customer's facilities during the warranty period, the hours effectively worked will not be billed, although SMAR shall be reimbursed from the service technician's transportation, meals and lodging expenses, as well dismounting/mounting costs, if any.
- 6. The repair and/or substitution of defective parts do not extend, under any circumstance, the original warranty term, unless this extension is granted and communicated in writing by SMAR.
- 7. No Collaborator, Representative or any third party has the right, on SMAR's behalf, to grant warranty or assume some responsibility for SMAR products. If any warranty would be granted or assumed without SMAR's written consent, it will be declared void beforehand.
- 8. Cases of Extended Warranty acquisition must be negotiated with and documented by SMAR.
- If necessary to return the equipment or product for repair or analysis, contact us. See item 4.
- 10. In cases of repair or analysis, the customer must fill out the Revision Requisition Form (FSR) included in the instructions manual, which contains details on the failure observed on the field, the circumstances it occurred, in addition to information on the installation site and process conditions. Equipments and products excluded from the warranty clauses must be approved by the client prior to the service execution.
- In cases of repairs, the client shall be responsible for the proper product packaging and SMAR will not cover any damage occurred in shipment.

- 12. In cases of repairs under warranty, recall or outside warranty, the client is responsible for the correct packaging and packing and SMAR shall not cover any damage caused during transportation. Service expenses or any costs related to installing and uninstalling the product are the client's sole responsibility and SMAR does not assume any accountability before the buyer.
- 13. It is the customer's responsibility to clean and decontaminate products and accessories prior to shipping them for repair, and SMAR and its dealer reserve themselves the right to refuse the service in cases not compliant to those conditions. It is the customer's responsibility to tell SMAR and its dealer when the product was utilized in applications that contaminate the equipment with harmful products during its handling and repair. Any other damages, consequences, indemnity claims, expenses and other costs caused by the lack of decontamination will be attributed to the client. Kindly, fill out the Declaration of Decontamination prior to shipping products to SMAR or its dealers, which can be accessed at www.smar.com/doc/declarationofcontamination.pdf and include in the packaging.
- 14. This warranty certificate is valid only when accompanying the purchase invoice.