Richland, Michigan USA

www.parker.com/pneumatics

	ISYS ISO VALVE SERIES				
Вι	ulletin Number		Bulletin Description		
	V450P	Rev. 4	Isys HA 26mm & HB 18mm ISO 15407 Valve, Installation & Service Instructions		
	V452P		isys HA & HB ISO 15407-2 Sandwich Flow Controls, Installation & Service Instructions		
	V453P	Rev. 5	Isys HA & HB 15407-2 Manifold, Installation & Service Instructions		
	V454P		Isys HA & HB Sandwich Regulator, Installation & Service Instructions		
	V455P	Rev. 1	Isys HA, HB ISO 15407-1 Subbase & Manifold Assembly, Installation & Service		
	V459P		Isys HA, HB, H1, H2, H3 with Moduflex Fieldbus, Installation & Service Instructions		
	V463P	Rev. 2	Isys H3 5599-2 Valve, Installation & Service Instructions		
	V464P		Isys HA, HB, H1, H2, H3 with Turck Fieldbus, Installation & Service Instructions		
	V467P		Isys H1 Sandwich Regulators, Installation & Service Instructions		
	V468P		Isys H1, H2, H3 ISO 5599-1 / 5599-2 Sandwich Flow Controls, Installation & Service		
	V469P	Rev. G	Isys H1, H2, H3 ISO 5599-1 / 5599-2 Subbase & Mannifold, Installation & Service		
	V470P	Rev. 3	Isys H1, H2, H3 ISO 5599-1 / 5599-2 Valves, Installation & Service Instructions		
	V471P	Rev. 3	Isys H2 & H3 Sandwich Regulator, Installation & Service Instructions		
	Safety Guide		PDN Safety Guide		

Richland, Michigan 49083 269-629-5000

Installation & Service Instructions V450P

isys HA 26mm & HB 18mm ISO 15407 Valve Service

ISSUED: September, 2008 Supersedes: October, 2007 Doc.# V450P, EN# 080674 Rev. 4

∕ WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:

- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this
 product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- · Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

∱ WARNING

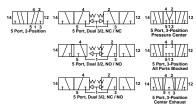
FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.

Safety Guide


For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the **Pneumatic Division Safety Guide** at: www.parker.com/safety

Introduction

Follow these instructions when installing, operating, or servicing the product.

Port Identification / Connections / Symbols

Port No.	Single Pressure	Dual Pressure
1	Inlet	Exhaust
2	Outlet	Outlet
3	Exhaust	Inlet
4	Outlet	Outlet
5	Exhaust	Inlet
12, 14	Pilot Ports for External	

Valves may be used for single outlet (3-Way) by plugging an outlet Port.

NOTE: The operator identification describes the ports that are connected when the operator is energized: operator 12 connects Port 1 to Port 2; operator 14 connects Port 1 to Port 4. Other ports may also be connected, or blocked – see symbols on the valve.

⚠ CAUTION: It is recommended that double solenoid and double remote air pilot operated 2-Position valves be mounted so that the axis of the valve spool is in the horizontal plane.

Lubrication

Factory Pre-lubed. If lubricating in service, use Parker F442 oil or equivalent paraffin based mineral oil with 150 to 200 SSU viscosity @100°F.

⚠ CAUTION: Do not use oils that are synthetic, reconstituted, have an alcohol content or a detergent additive.

Application Limits

These products are intended for use in general purpose compressed air systems only.

Operating Pressure Range:

Maximum: 145 PSIG (1000 kPa)

Minimum: See Chart

Operator / Function	Internal Pilot	Min. PSIG (kPa) HA	Min. PSIG (kPa) HB
1	Single Solenoid - 2-Pos	25	20
2	Double Solenoid - 2-Pos	25 (173)	30 (207)
N, P, Q	Double Solenoid - 3/2**	(1/3)	(207)
3	Single Remote - 2-Pos	Vacuum	Vacuum
4	Double Remote Pilot - 2-Pos	Vacuum	Vacuum
5, 6, 7	Double Solenoid - 3-Pos	35 (241)	35 (241)
8, 9, 0	Double Remote Pilot - 3-Pos	Vacuum	Vacuum
E	Single Solenoid - 2-Pos Air Return / Spring Assist	30	30
F	Single Remote Pilot - 2-Pos Air Return / Spring Assist	(207	(207)
	External Pilot*		
All	HA & HB Series	Vacuum	Vacuum

^{*} External Pilot Pressure / Remote Pilot Signal - 45 to 145 PSIG (310 to 1000 kPa).
** Operator / Function N, P, Q not suitable for Vacuum Service or Eexternal Pilot.

Ambient Temperature Range: -15°C to 49°C (5°F to 120°F)

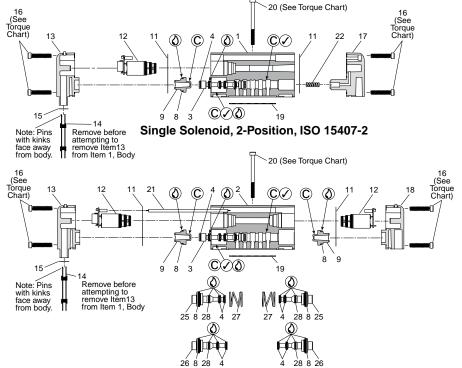
Voltage Range: Rated Voltage +10%, -15%

⚠ CAUTION: Solenoid versions of this valve contain solid state components that can be damaged by transient voltage spikes, over-voltage or high temperature. To protect against premature solenoid failure, please read and adhere to the following:

If this solenoid operated valve is used in a circuit with other inductive loads, the solenoid should be electrically protected with a voltage suppression device (e.g. transient voltage suppressor or varistor) that has a minimum rating of 1.6 times the rated voltage of the solenoid valve and sufficient capacity to dissipate the energy of other inductive loads.

Servicing Valve Body

Refer to Figure 1 and 2 to aid with disassembly and reassembly.

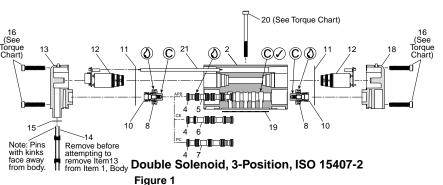

- Remove Valve from base by removing Body to Base Screws (20).
- For ISO 15407-2: Remove Connector (14) by carefully gripping the pins with a needle nose pliers and pull to remove.
 - For ISO 15407-1: Go directly to Step 3.
- 3. Remove each End Cap (13 / 17 / 18) by removing the Screws (16).
- 4. Remove the Pistons (9 or 10), Spool Return Spring (22) if applicable, and Spool (3, 5, 6 or 7), or for dual 3/2 (Split Spool Valve), remove Spool (25 or 26) and Spring (27), being careful not to scratch the valve body bore.
- 5. Using a clean, lint free cloth, clean sealing surfaces.
- Apply a light coating of grease to each part noted in Figure 1 and the mating sealing surface of each of these parts.
- Reassemble valve in reverse order of disassembly, replacing the necessary parts. Care must be taken when reassembling the End Caps. Install Item 14 Connector after Item 13

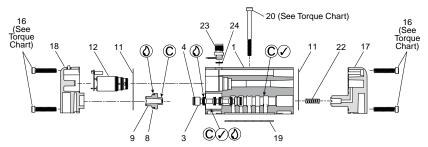
Operator End Cap is installed on the Body. Note pin kink orientation in Figure 1.

8. Install Base Gasket (19) onto pin on bottom of valve. For Internal Pilot Pressure, be sure the letters "I" are visible. For External Pilot Pressure, be sure the letters "X" are visible. See the valve to base gasket drawings below.

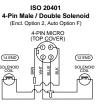
Note: After servicing the valve in any way, apply pressure to the valve and check for leaks. If any leak exists, repeat assembly process and retest until valve is leak free.

Item	Description	Item	Description
1	Body, Single Solenoid	14	Connector
2	Body, Double Solenoid	15	O-Ring
3	Spool - 2-Position	16	Screws, Operator to Body
	(Seals Assembled)	17	Return Operator End Cap,
4	Seal - Spool		Single Solenoid
5	Spool - 3-Position APB	18	Return Operator End Cap,
	(Seals Assembled)		Double Solenoid
6	Spool - 3-Position CE	19	Body to Base Gasket
	(Seals Assembled)	20	Screws, Body to Base
7	Spool - 3-Position PC	21	Connector, 2-Pin
	(Seals Assembled)	22	Spool Return Spring
8	Seal, Operator Piston	23	M12 Insert Assembly
9	Operator Piston, 2-Position	24	O-Ring
10	Operator Piston, 3-Position	25	Split Spool, N.O.
11	End Cap Gasket	26	Split Spool, N.C.
12	Solenoid / Circuit Board Assy	27	Spring, Split Spool
13	Solenoid Operator End Cap	28	O-ring, Split Spool

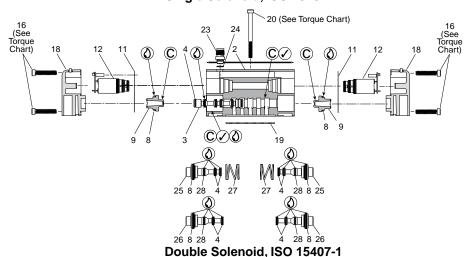

Double Solenoid, 2-Position, ISO 15407-2

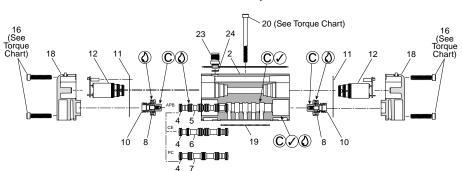

- ⚠ Lightly grease with provided lubricant.
 ✓ Inspect for nicks, scratches, and surface imperfections.
 If present, reduced service
- (C) Clean with lint-free cloth.

planned.


life is probable and future

replacement should be





Single Solenoid, ISO 15407-1

Double Solenoid, 3-Position, ISO 15407-1

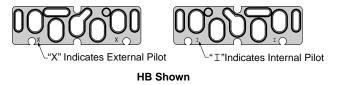
Figure 2

Body Service Kits

Valve	Kit Number	Description	Kit Includes (Qty)	
HA	PS5501P	2-Position	All parts below plus	
НВ	PS5601P	Body Service Kit	Return Spring (1)	
HA	PS5502P	3-Position APB		
HB	PS5602P	Body Service Kit	Spool (1)	
HA	PS5503P	3-Position CE	Piston Assembly (2) Grease Tube (1)	
HB	PS5603P	Body Service Kit		
HA	PS5504P	3-Position PC		
HB	PS5604P	Body Service Kit		
НВ	PS5606P	2-Position, Dual 3/2, N.C. Body Service Kit	Spool Assembly (1)	
НВ	PS5607P	2-Position, Dual 3/2, N.O. Body Service Kit	Spring (1) Grease Tube (1)	

Accessory Kits

Valve	Kit Number	Description	(Qty)
HA HB	PS5587P PS5687P	Valve Bolt Kit	12
HA HB	PS5505P PS5605P	Body to Base Gasket Kit – Standard	10


Valve Mounting Torque Specifications (Item 20)

Valve to Base	HA	НВ
Torque - in.lb.	15 to 18	10 to 12
(Nm)	(1.7 to 2.0)	(1.1 to 1.3)

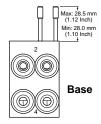
Operator Cap to Body Torque Specifications (Item 16)

Cap to Body	HA / HB
Torque - in.lb.	5 to 7
(Nm)	(.6 to .80)

Pilot Select Gasket Kits

HA 26mm & HB 18mm ISO 15407 Valve Service Remote Pilot Block Installation

Not following instruction may result in Remote Pilot Block damage or inadequate thread engagement, which may lead to personal injury, property damage, or economic loss.


Important:

- · Remove pressure and electrical connections before installation.
- All threads on tie rods and screws must be free of rust, water or other debris, which could prevent finger thread engagement.

Step 1: Install Tie Rods

- 1. Install two Tie Rods (3) to the base, torque finger tight.
- Adjust tie rod height to 28.5 / 28.0 mm (1.12 / 1.10 inch) as figure shows.
- If finger tight height exceeds 28.5 mm (1.12 inch), use mechanical tightening as necessary to get the proper height.

Note: "Base" could be a manifold, sub-base or sandwich flow control.

Step 2: Install Remote Pilot Block

- Lay the Pilot Block Gasket (2) on the Base. Make sure the two rubber projections are face up and the orientation of the gasket is correct.
- Engage both Tie Rods (3) into mounting holes on the Remote Pilot Block.
- 3. Carefully engage the Plug into the Base.
- Continue to lower the Pilot Block Body by carefully engaging the two rubber projections on the gasket into the appropriate holes on the Pilot Block Body.
- Press the Pilot Block Body by hand firmly. To confirm the gasket is indeed attached to the Pilot Block Body, lift the Body by about one half inch. Both rubber projections should remain in the holes.
- 6. Lay the Pilot Block Body back on the Base.

Step 3: Install Valve

- 1. Locate Valve Gasket (4) on bottom of Valve.
- 2. Install valve onto Pilot Block Body.
- 3. Carefully engage the Valve Plug.
- Using hex wrench, tighten two Screws (5) torque 1.5 to 1.7 Nm (13 to 15 in-lb) for HA, 0.9 to 1.1 Nm (8 to 10 in-lb) for HB.

Step 4: Leakage Check

 Apply pressure to base and check for audible leakage at various joints. If any are present, do not not operate the valve, repeat the assembly procedure until satisfied.

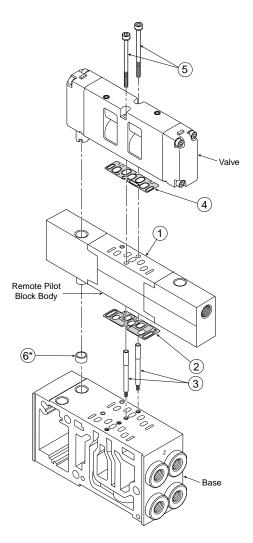


Figure 3
ISO 15407-2 HB Pilot Block Body Shown
(Valve & Base shown for reference only)

Component List

The components listed below are for identification purposes only, some of these components are available in various Sandwich Regulator Kits, some are not available due to special factory assembly. Individual components are not sold separately since all kit components should be installed when serviced.

Item	Description	
1	Remote Pilot Block Body	
2	Pilot Block Gasket	
3	Tie Rods	
4	Valve Gasket	
5	Mounting Screws	
6	Protective Cap*	

*Install Item 6, Protective Cap, in manifold over electrical plug if servicing manifold assembly with valve or remote pilot block removed and power is on. Remove cap before re-installing valve or remote pilot block.

For all Instruction Sheets, go to www.parker.com/pneumatic

V450P - isys HA 26mm & HB 18mm ISO 15407 Valve Service

V452P - isys HA & HB ISO 15407-2 Sandwich Flow Controls

V454P - isys HA & HB Sandwich Regulators

V455P - isys HA & HB ISO 15407-1 Subbbase & Manifold Installation

V467P - isys H1 Sandwich Regulators

V468P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Sandwich Flow Controls

V469P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Subbase & Manifold Installation

V470P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Valve Service

V471P - isys H2 & H3 Sandwich Regulators

Richland, Michigan 49083 269-629-5000

Installation & Service Instructions V452P

isys HA & HB ISO 15407-2 Sandwich Flow Controls

ISSUED: August, 2005 Supersedes: None Doc.# V-452P, NPR# 050528

⚠ WARNING

- To avoid unpredictable system behavior that can cause personal injury and property damage:
- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- · Service according to procedures listed in these instructions.
- Installation, service, and conversion of these produc ts must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

⚠ WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and / or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without potents.

Introduction

Follow these instructions when installing, operating, or servicing the product.

Installation & Operating Instructions:

A Flow Control "Sandwich" controls the flow of air from the valve exhaust ports to atmosphere. The HA & HB 4-Way valve is typically used with a double acting cylinder alternately pressurizing one end while exhausting the other. Cylinder speed can be influenced by restricting the exhaust path.

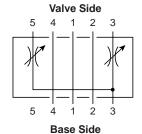
The Flow Control "Sandwich" is intended for use with the respective subbase or manifold mounted valves. HA & HB valves and flow controls are designed in conformance to ISO 15407-2 HA & HB Flow Control "Sandwiches" are only recommended for use with Common Port versions of Sandwich Regulators. The Flow Control is to be assembled between the regulator and the subbase or manifold.

If used with Independent Port version of Sandwich Regulator, functionality is limited as follows:

Flow Control "Sandwich" used in conjunction with

Independent Port version of Sandwich Regulator - Adjust speed with the adjusting screw labeled "5". It adjusts the speed of exhaust flow from cylinder ports "2" and "4". Independent speed adjustment is not possible. This could result in different exhaust speeds for cylinder ports "2" and "4" since line pressure is supplied to one cylinder port and a regulated pressure is supplied to the other. The other adjusting screw is non-functional.

Lubrication


Factory Pre-lubed. If lubricating in service, use Parker F442 oil or equivalent paraffin based mineral oil with 150 to 200 SSU viscosity @100°F.

⚠ CAUTION: Do not use oils that are synthetic, reconstituted, have an alcohol content or a detergent additive.

Application Limits:

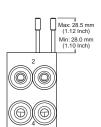
These products are intended for use in general purpose compressed air systems only.

Operating Pressure Range: Maximum 145 PSIG, 1000kPa Ambient Temperature Range: -15°C to 49°C (5°F to 120°F) ANSI Symbol:

Installation:

(See Figure 1, HB Sandwich Flow Control shown as example)

Not following instruction may result in Sandwich Fow Control damage or inadequate thread engagement, which may lead to personal injury, property damage, or economic loss.


Important:

- Remove pressure and electrical connections before installation.
- All threads on tie rods and screws must be free of rust, water or other debris, which could prevent finger thread engagement.

Step 1: Install Tie Rods

- 1. Install two Tie Rods (6) to the base, torque finger tight.
- 2. Adjust tie rod height to 28.5/28.0 mm (1.12/1.10 inch) as figure shows.
- If finger tight height exceeds 28.5 mm (1.12 inch), use mechanical tightening as necessary to get the proper height.

Note: "Base" could be a manifold or a sub-base.

Step 2: Install Sandwich Flow Control

- Lay the Sandwich Flow Control Gasket (2) on the Base.
 Make sure the two rubber projections are face up and the orientation of the gasket is correct.
- Engage both Tie Rods (3) into mounting holes on Flow Control Body, lower the Flow Control body.
- 3. Carefully engage the Electrical Plug into the Base.
- Continue to lower the Flow Control Body by carefully engaging the two rubber projections on the gasket into the appropriate holes on the Flow Control Body.
- Press the Flow Control Body by hand firmly. To confirm the gasket is indeed attached to the Flow Control Body, lift the Flow Control Body by about one half inch. Both rubber projections should remain in the holes.
- 6. Lay the Flow Control Body back on the Base.

Step 3: Install Valve

- 1. Locate Valve Gasket (5) on bottom of Valve Body.
- 2. Install valve onto Flow Control.
- 3. Carefully engage the Valve Electrical Plug.
- Using hex wrench, tighten two Screws (4) torque 1.5 to 1.7 Nm (13 to 15 in-lb) for HA, 0.9 to 1.1 Nm (8 to 10 in-lb) for HB.

Step 4: Leakage Check

 Apply pressure to base and check for audible leakage at various joints. If any are present, do not not operate the valve, repeat the assembly procedure until satisfied.

Note: If both a Sandwich Flow Control and Sandwich Regulator is to be installed, the Flow Control should be installed between the Regulator and the Base. Refer to Sandwich Regulator Installation & Service Instructions (V-454) for Sandwich Regulator installation.

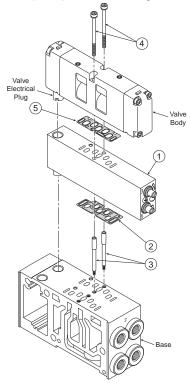


Figure 1 (HB Shown)

Adjustment Procedures:

For HA & HB

Both Adjusting Screws (4) are located at the 12 End of the assembly. Adjustment screw labeled "5" controls the flow of air from cylinder Port 4 to exhaust Port 3. With a double solenoid valve this occurs when Operator #12 is actuated. With a single solenoid valve this occurs when Operator #14 is not actuated. Adjustment screw labeled "3" controls air from cylinder Port 2 to exhaust Port 3.

- Turn both adjustment screws clockwise until fully closed and then counterclockwise slightly.
- While cycling valve with cylinder adjust clockwise to decrease speed or counterclockwise to increase speed.

Component List

The components listed below are for identification purposes only, some of these components are available in various Sandwich Flow Control Kits, some are not available due to special factory assembly. Individual components are not sold separately since all kit components should be installed when serviced.

Item	Description		
1	Flow Control Body		
2	Flow Control / Regulator Gasket		
3	Tie Rods		
4	Mounting Screws		
5	Valve Gasket		

Sandwich Flow Control Kits

Size	Kit Number	Kit Includes Item # , (Qty)	Description
НВ	PS5635	1, 2, 3 (2)	18mm Sandwich Flow Control Kit with Plug-in (Type 2)
НА	PS5535 1, 2, 3 (2)		26mm Sandwich Flow Control Kit with Plug-in (Type 2)
НВ	PS5642	1 (Without Elect. Plug), 2, 3 (2)	18mm Sandwich Flow Control Kit without Plug-in (Type 1)
НА	PS5542	1 (Without Elect. Plug), 2, 3 (2)	26mm Sandwich Flow Control Kit with Plug-in (Type 1)
НВ	PS5636	3 (12)	18mm Sandwich Flow Control Tie Rod Kit
НА	PS5536	3 (12)	26mm Sandwich Flow Control Tie Rod Kit

For all Instruction Sheets, go to www.parker.com/pneumatic

V450P - isys HA 26mm & HB 18mm ISO 15407-2 Valve Service V452P - isys HA & HB ISO 15407-2 Sandwich Flow Controls

V454P - isys HA & HB Sandwich Regulators

V467P - isys H1 Sandwich Regulators

V468P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Sandwich Flow Controls

V469P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Subbase & Manifold Installation

V470P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Valve Service

V471P - isys H2 & H3 Sandwich Regulators

Richland, Michigan 49083 269-629-5000 Installation & Service Instructions V453P

Isys HA & HB ISO 15407-2 Manifold Installation ISSUED: October, 2008

Supersedes: January, 2007 Doc. #V453P, EN #080710, Rev. 5

. WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:

- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this
 product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

! WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.

⚠ WARNING

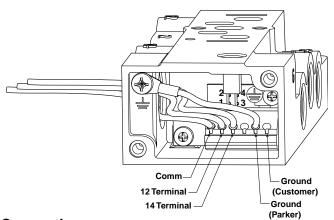
Air exhausting from one valve into the exhaust gallery of the manifold assembly may momentarily pressurize other valve circuits open to the same gallery. Design the circuit such that there is no hazard or consequence of damage from this action.

Safety Guide

For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the **Pneumatic Division Safety Guide** at: www.parker.com/safety

Introduction

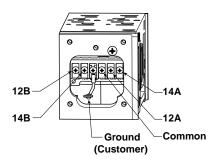
Follow these instructions when installing, operating, or servicing the product.

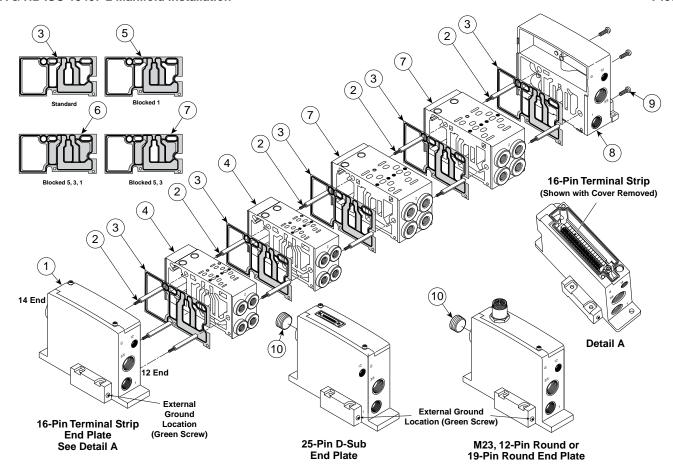

Application Limits

These products are intended for use in general purpose compressed air systems only. Compliance with the rated pressure, temperature, and voltage is necessary - see Installation & Service Instructions packed with valve.

Wiring Instructions for Individual Base Wiring

- Follow all requirements for local and national electrical codes.
- Remove end cover from base by backing off the two captive screws
- 3. Connect wires as shown in chart.
- 4. An external ground connection must be attached to the green ground screw of every base in an assembly.
- 5. Disregard unused wires or terminals.
- Reassemble cover to base by tightening screws from 0.8 to 1.0 Nm (7 to 9 in-lbs).


Subbase Wiring



Connections

	14 Solenoid	12 Solenoid
Valves with Wires	Black Wires	Red Wires
Valves with Terminal Block (Will accept 18 to 24 Gauge Wires)	14 and Com Terminals	12 and Com Terminals

Manifold Wiring

ltem	# Description	Item	# Description
1	Left End Plate	6	Gasket - Blocked 1, 3, 5
2	Tie Rod (3 per Base)	7	Manifold Base (HA)
3	Gasket - Standard	8	Right End Plate
4	Manifold Base (HB)	9	Mounting Screws
5	Gasket - Blocked 1	10	Pipe Plug

Assembly Techniques

- Lay Left Hand End Plate (Item 1) on left side (when looking at cylinder ports).
- Attach three Tie Rods (Item 2) to the Left End Plate (Item 1) by hand tightening them down completely and then backing off 1-2 turns. Mount the Gasket (Item 3) over the Tie Rods.
- Add Manifold Base (Item 4). Place 3 Tie Rods (Item 2) through the Base and screw into the Tie Rods mounted in the Left End Plate by hand tightening them down completely and then backing off 1-2 turns.
- Build manifold vertically by adding remaining Manifolds, Gaskets and Tie Rods.
- 5. Place Right Hand End Plate and tighten screws to torque specification.
- Check the manifold for straightness. Loosen and tighten bolts if needed.
- Add Valves and Accessories. All Manifold Assemblies should be leak tested before operation.

Caution: If the socket head cap screws do not engage the last tie rod, it is because the stack of uncompressed gaskets causes the manifolds and gaskets to be longer than the tie rod sets. It will be necessary to lengthen the tie rod sets by backing away each tie rod from its adjacent tie rod about one or two turns. This stack length

problem is likely to occur at 6 or 7 manifold bases and worsens with each additional manifold

Manifold Assembly Wiring Instructions

- Follow all requirements for local and national electrical codes.
- 2. An External Ground Connection must be attached to the Manifold Assembly. An external ground location is provided on the Manifold End Plate (See drawing). All 25-Pin, D-Sub versions must use this ground connection. 19-Pin and 16-Pin Terminal Strip versions may omit this connection <u>only</u> if the ground is connected through the connector. Otherwise, the external ground connection location <u>must</u> be used.

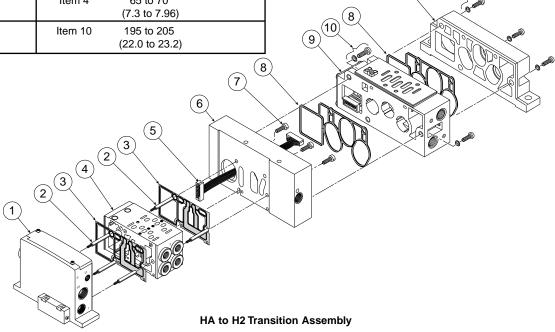
Manifold / End Plate Assembly Torque Values

	HA/HB
Torque - in.lb. (Nm)	65 to 70 (7.3 to 7.9)

Manifold Kits

Mailiola Kits		
Kit Number	Description	Item Number
PS5612P	HB Manifold Hardware Kit	2
PS5512P	HA Manifold Hardware Kit	2
PS561AP	HB / HA Manifold to Manifold Gasket Kit (Standard)	3
PS561BP	HB / HA Manifold to Manifold Gasket Kit (Blocked #1 Port)	5
PS561CP	HB / HA Manifold to Manifold Gasket Kit (Blocked #1, 3, 5 Ports)	6
PS561DP	HB / HA Manifold to Manifold Gasket Kit (Blocked #3, 5 Ports)	7

HA & HB ISO 15407-2 Manifold Installation

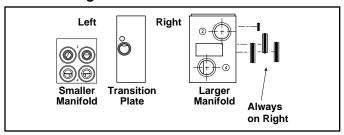

HA to H2 Manifold Assembly

The smaller manifold must be on the left side of the Transition Plate. The Transition Plate (Item 6) acts as a combination right end plate for the smaller manifold and left end plate for the larger manifold.

- 1. Lay Left Hand End Plate (Item 1) on left side (when looking at cylinder ports).
- 2. Attach three Tie Rods (Item 2) to the Left End Plate (Item 1) by hand tightening them down completely and then backing off 1-2 turns. Mount the Gasket (Item 3) over the Tie Rods.
- 3. Add Manifold Base (Item 4). Place 3 Tie Rods (Item 2) through the Base and screw into the Tie Rods mounted in the Left End Plate by hand tightening them down completely and then backing off 1-2 turns.
- 4. Build manifold vertically by adding remaining Manifolds, Gaskets, Tie Rods and Transition Plate.
- 5. Lay entire manifold on a flat surface and tighten screws to torque specification.
- 6. Place Right Hand End Plate and tighten screws to torque specifications in chart.
- 7. Add Valves and Accessories, All Manifold Assemblies should be leak tested before operation.

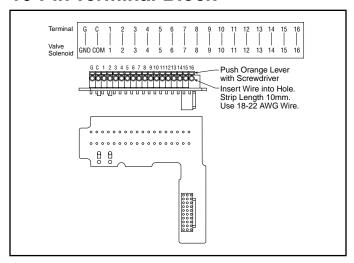
Manifold / End Plate Assembly Torque Values

Torque - in.lb. (Nm)	Item 4	65 to 70 (7.3 to 7.96)
Torque - in.lb. (Nm)	Item 10	195 to 205 (22.0 to 23.2)

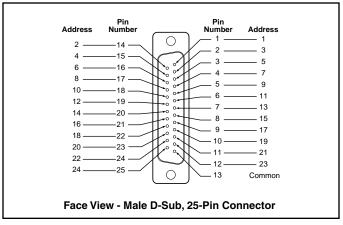


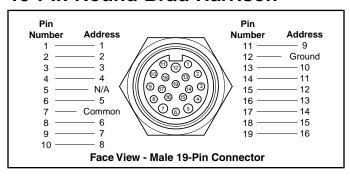
Item

Description


- Left End Plate (HA) 1
- 2 Tie Rod (3 per Base)
- 3 Manifold Gasket (Standard)
- 4 Manifold Base (HA)
- 5 Wire Harness
- Transition Plate (HA to H2) 6
- 7 Mounting Screws
- Manifold Gasket (H2) 8
- 9 Manifold Base (H2)
- 10 Mounting Screws & Lock Washers (H2)
- Right End Plate 11

Isolator Plug Locations with Transition Plates




16-Pin Terminal Block

25-Pin, D-Sub Connector (Male)

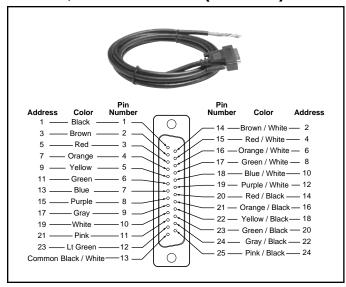
19-Pin Round Brad Harrison

19-Pin Round Cable Specifications

Common Pin "7" is rated for 8 amps. Cable common wire must be greater than total amperage of solenoids on Add-A-Fold assembly.

Example: 8 station manifold, 16 solenoids,

 $120VAC - 16 \times .039 \text{ amps} = .63 \text{ total amp rating}.$

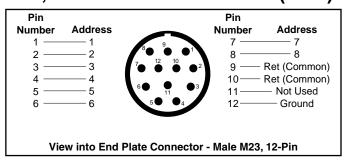

NEMA 4 rated with properly assembled NEMA 4 rated cable.

Female Cable Assemblies:

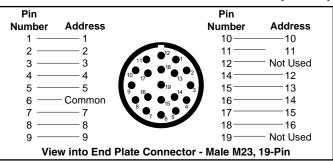
Refer to www.connector.com

Brad Harrison #333030P80M050	16.40 ft. (Female to Male Cable)
Brad Harrison #333030P80M100	32.80 ft. (Female to Male Cable)

25-Pin, D-Sub Cable (Female)



25-Pin, D-Sub Cable Specifications


Common Pin "13" is rated for 3 amps. Common wire rating must be greater than total amperage of all solenoids on a Add-A-Fold assembly.

IP65 rated with properly assembled IP65 rated cable.

M23, 12-Pin Round Connector (Male)

M23, 19-Pin Round Connector (Male)

For all Instruction Sheets, go to www.parker.com/pneumatic

V450P - Isys HA 26mm & HB 18mm ISO 15407-2 Valve Service

V452P - Isys HA & HB ISO 15407-2 Sandwich Flow Controls

V454P - Isys HA & HB Sandwich Regulators

V467P - Isys H1 Sandwich Regulators

V468P - Isys H1, H2 & H3, ISO 5599-1, 5599-2 Sandwich Flow Controls V469P - Isys H1, H2 & H3, ISO 5599-1, 5599-2 Subbase & Manifold Installation V470P - Isys H1, H2 & H3, ISO 5599-1, 5599-2 Valve Service V471P - Isys H2 & H3 Sandwich Regulators

Richland, Michigan 49083 269-629-5000

Installation & Service Instructions V454P

isys HA & HB Sandwich Regulators

ISSUED: August, 2005 Supersedes: None Doc.# V-454P, NPR# 050528

⚠ WARNING

- To avoid unpredictable system behavior that can cause personal injury and property damage:
- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- · Service according to procedures listed in these instructions.
- Installation, service, and conversion of these produc ts must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

⚠ WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and / or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Introduction

Follow these instructions when installing, operating, or servicing the product.

Installation & Operating Instructions:

A sandwich regulator is used to provide regulated pressure to individual valves in a manifolded valve arrangement. Two basic modes of regulation are available as follows:

Common Port Regulation - Provides adjustable regulated air pressure to the valve inlet.

Independent Port Regulation - Provides (2) separately adjustable regulated air pressures, one to each of the valves exhaust passages. The valves exhaust (coming out of its inlet passage) is directed to manifold or subbase exhaust port "5".

↑ CAUTION: The reverse valve porting utilized with Independent Port Regulation will reverse the function of 4-Way, 3-Position cylinder to exhaust and 4-Way, 3-Position inlet to cylinder valves. Utilize the opposite function valve for normal operation.

Sandwich regulator should be installed with reasonable accessibility for service whenever possible. Repair service kits

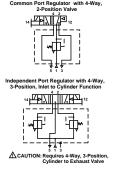
are available. Keep pipe or tubing lengths to a minimum with inside clean and free of dirt and chips. Pipe joint compound should be used sparingly and applied only to the male pipe, never into the female port. Do not use PTFE tape to seal pipe joints. Pieces have a tendency to break off and lodge inside the unit, possibly causing malfunction.

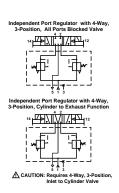
Air applied to the sandwich regulator must be filtered to realize maximum component life.

Lubrication

Factory pre-lubed. If lubricating in service, use Parker F442 oil or equivalent paraffin based mineral oil with 150 to 200 SSU viscosity @100°F.

CAUTION: Do not use oils that are synthetic, reconstituted, have an alcohol content or a detergent additive.


Application Limits


These products are intended for use in general purpose compressed air systems only.

Operating Pressure Range: Maximum 145 PSIG (1000 kPa)

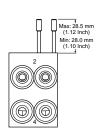
Ambient Temperature Range: -15°C to 49°C (5°F to 120°F)

ANSI Symbol

Installation:

(See Figure 1, HB Sandwich Regulator shown as example)

Not following instruction may result in Sandwich Regulator damage or inadequate thread engagement, which may lead to personal injury, property damage, or economic loss.


Important:

- Remove pressure and electrical connections before installation.
- All threads on tie rods and screws must be free of rust, water or other debris, which could prevent finger thread engagement.

Step 1: Install Tie Rods

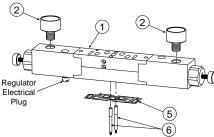
- 1. Install two Tie Rods (6) to the base, torque finger tight.
- 2. Adjust tie rod height to 28.5/28.0 mm (1.12/1.10 inch) as figure shows.
- 3. If finger tight height exceeds 28.5 mm (1.12 inch), use mechanical tightening as necessary to get the proper height.

Note: "Base" could be a manifold, sub-base or sandwich flow control..

HA & HB Sandwich Regulators

Step 2: Install Sandwich Regulator

- 1. Lay the Sandwich Regulator Gasket (5) on the Base. Make sure the two rubber projections are face up and the orientation of the gasket is correct.
- 2. Engage both Tie Rods (6) into mounting holes on Regulator Body, lower the Regulator Body.
- 3. Carefully engage the Electrical Plug into the Base.
- Continue to lower the Regulator Body by carefully engaging the two rubber projections on the gasket into the appropriate holes on the Regulator Body.
- 5. Press the Regulator Body by hand firmly. To confirm the gasket is indeed attached to the Regulator Body, lift the Regulator Body by about one half inch. Both rubber projections should remain in the holes.
- 6. Lay the Regulator Body back on the Base.


Step 3: Install Valve

- 1. Locate Valve Gasket (7) on bottom of Valve Body.
- Install valve onto Regulator.
- 3. Carefully engage the Valve Electrical Plug.
- 4. Using hex wrench, tighten two Screws (8) torque 1.5 to 1.7 Nm (13 to 15 in-lb) for HA, 0.9 to 1.1 Nm (8 to 10 in-lb) for HB.

Step 4: Leakage Check

1. Apply pressure to base and check for audible leakage at various joints. If any are present, do not not operate the valve, repeat the assembly procedure until satisfied.

Note: If both a Sandwich Flow Control and Sandwich Regulator is to be installed, the Flow Control should be installed between the Regulator and the Base. Refer to Sandwich Flow Control Installation & Service Instructions (V-452) for Sandwich Flow Control installation.

HA Independent Port Sandwich Regulator

Outlet Pressure Adjustment:

- 1. Before turning on the air supply, turn the adjusting knob counterclockwise until compression is released from the pressure control spring then turn on air supply. Proceed to adjust the desired downstream pressure by turning adjusting knob clockwise. This permits pressure to build up slowly in the downstream line.
- 2. To decrease regulated pressure setting, always reset from a pressure lower than the final setting required. Example, lowering the secondary pressure from 550 kPa (80 PSIG) to 410 kPa (60 PSIG) is best accomplished by dropping the secondary pressure to 345 kPa (50 PSIG), then adjusting upward to 410 kPa (60 PSIG).

Service Instructions:

1. Disconnect air supply and depressurize the unit.

- 2. Loosen nut on adjusting screw. Turn adjusting screw counterclockwise until all downstream air is exhausted.
- 3. For HB Regulator, remove Regulator Cartridge from block and replace with a new unit. For HA Regulator, remove Regulator from base and replace with a new unit per installation procedure.
- 4. Reapply pressure to unit and check for audible leakage at joints or out bleed holes. If any are present, do not operate the valve. Repeat assembly procedure until satisfied.
- 5. Adjust outlet pressure per Outlet Pressure Adjustment procedure.

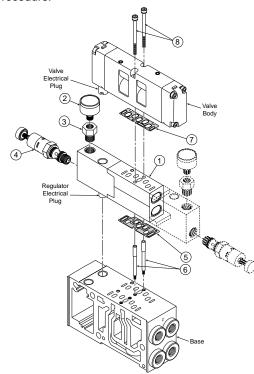


Figure 1 **HB Common Port Sandwich Regulator** (Valve & Base shown for reference only)

Component List

The components listed below are for identification purposes only, some of these components are available in various Sandwich Regulator Kits, some are not available due to special factory assembly. Individual components are not sold separately since all kit components should be installed when serviced.

Item	Description
1	Regulator Body Assembly
2	Gauge
3*	Adapter Fitting
4	Cartridge Regulator
5	Flow Control / Regulator Gasket
6	Tie Rods
7	Valve Gasket
8	Mounting Screws

^{*} Alternating Fittings must be used in order to fit two HB regulators to each other.

For all Instruction Sheets, go to www.parker.com/pneumatic

V450P - isvs HA 26mm & HB 18mm ISO 15407-2 Valve Service

V452P - isys HA & HB ISO 15407-2 Sandwich Flow Controls

V454P - isys HA & HB Sandwich Regulators

V467P - isys H1 Sandwich Regulators

V468P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Sandwich Flow Controls V469P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Subbase & Manifold Installation

V470P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Valve Service

V471P - isys H2 & H3 Sandwich Regulators

Richland, Michigan 49083 269-629-5000

Installation & Service Instructions V455P

isys HA & HB ISO 15407-1 Subbase & Manifold Assembly

ISSUED: August, 2006 Supersedes: None

Doc. #V455P, NPR #060824, Rev. 1

∕!\WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:

- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this
 product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

MARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

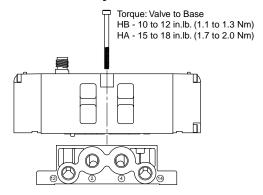
EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.

. ! . WARNING

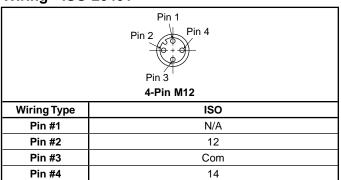
Air exhausting from one valve into the exhaust gallery of the manifold assembly may momentarily pressurize other valve circuits open to the same gallery. Design the circuit such that there is no hazard or consequence of damage from this action.

Safety Guide

For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the **Pneumatic Division Safety Guide** at: www.parker.com/safety

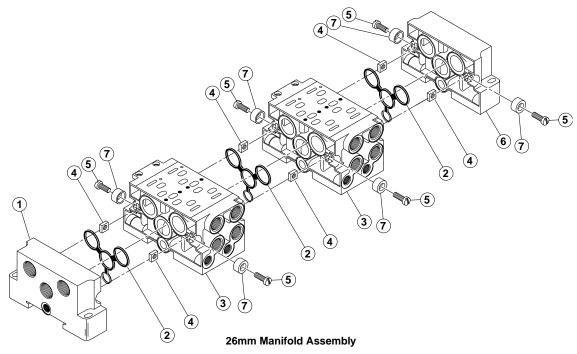

Introduction

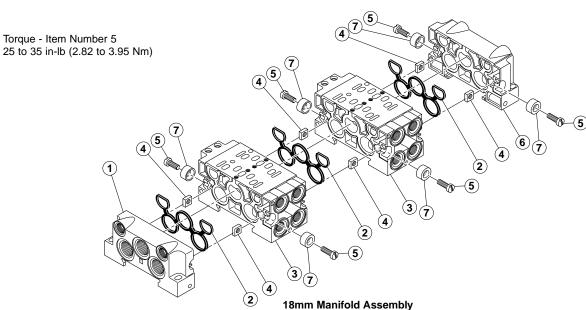
Follow these instructions when installing, operating, or servicing the product.


Application Limits

These products are intended for use in general purpose compressed air systems only. Compliance with the rated pressure, temperature, and voltage is necessary - see Installation & Service Instructions packed with valve.

Subbase Assembly


Wiring - ISO 20401



Service Kits

Kit Number	Description	Items Included (Qty)	
PEJ02-02-80	18mm End Plate Kit, 1/4" NPT	, ,,	
PEJ02-02-70	18mm End Plate Kit, 1/4" BSPP	1 (1), 2 (1), 4 (2)	
PEJ01-03-80	26mm End Plate Kit, 3/8" NPT	5 (2), 6 (1), 7 (2)	
PEJ01-03-70	26mm End Plate Kit, 3/8" BSPP		
D02P-01-80	18mm Intermediate Air Supply Base Kit, 1/8" NPT	Not Shown	
D01P-02-80	26mm Intermediate Air Supply Base Kit, 1/4" NPT	Not Shown	
D02BD0	18mm Manifold Port Isolation Disc Kit	Not Shown (3 per Kit)	
D01BD0	26mm Manifold Port Isolation Disc Kit	Not Shown (3 per Kit)	
DX02BLK	18mm Blanking Plate Kit	Not Shown	
DX01BLK	26mm Blanking Plate Kit	Not Shown	
DX02M2MB*	Manifold to Manifold Bolt Kit	4 (10), 5 (10), 7 (10)	
DX02M2MGSKT	02 Manifold to Manifold Gasket Kit		
DX01M2MGSKT	01 Manifold to Manifold Gasket Kit		

^{*} Use this Number for both sizes, PJLP02 & PJLP01.

Manifold to Manifold Assembly

- Lay Right End Plate (when looking at Cylinder Ports) Port Side down.
- 2. Place Gasket in gasket track and Retaining Nut in slot.
- 3. Place Manifold on top and tighten using Screw and Washer (both sides).
- Repeat Steps 2 and 3 until all manifold slices are assembled.
- 5. Attach Left End Plate.
- 6. Lay Manifold on flat surface and check for straightness. Tighten all bolts per torque specifications.

Item Number	Description
1	Left End Plate
2	Gasket
3	Manifold
4	Retaining Nut
5	Screw
6	Right End Plate
7	Washer

For all Instruction Sheets, go to www.parker.com/pneumatic

V450P - isys HA 26mm & HB 18mm ISO 15407 Valve Service

V452P - isys HA & HB ISO 15407-2 Sandwich Flow Controls

V454P - isys HA & HB Sandwich Regulators

V455P - isys HA & HB ISO 15407-1 Subbbase & Manifold Installation

V467P - isys H1 Sandwich Regulators

V468P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Sandwich Flow Controls

V469P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Subbase & Manifold Installation

V470P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Valve Service

V471P - isys H2 & H3 Sandwich Regulators

Richland, Michigan 49083 269-629-5000

Installation & Service Instructions V459P

Isys HA, HB / H1, H2, H3 with Moduflex Fieldbus ISSUED: January, 2009

Supersedes: None Doc. #V459P, EN #080475

⚠ WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:

- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this
 product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- · Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

⚠ WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.

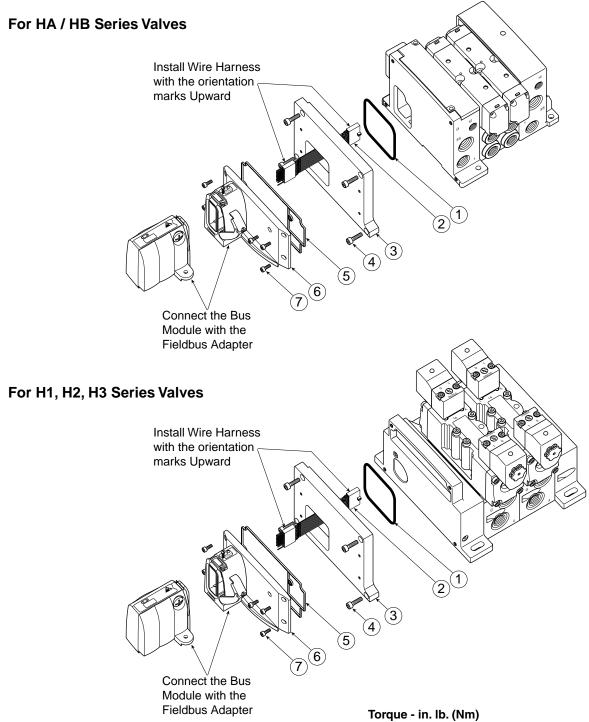
$extcolor{L}$ warning

Air exhausting from one valve into the exhaust gallery of the manifold assembly may momentarily pressurize other valve circuits open to the same gallery. Design the circuit such that there is no hazard or consequence of damage from this action.

Safety Guide

For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the **Pneumatic Division Safety Guide** at: www.parker.com/safety

Introduction


Follow these instructions when installing, operating, or servicing the product.

Application Limits

These products are intended for use in general purpose compressed air systems only. Compliance with the rated pressure, temperature, and voltage is necessary - see Installation & Service Instructions packed with valve.

Kits

Kit Number	Description	
PS5620M4*P	HA / HB Moduflex Adapter Kit	
PS5624M4*P	HA / H2 Moduflex Adapter Kit	
PS4025M4*CP	H1 / H2 / H3 Moduflex Adapter Kit	
PS4026M4*CP	H1 / H3 Moduflex Adapter Kit	
PS4027M4*CP	H1 / H2 Moduflex Adapter Kit	
PS4028M4*CP	H2 / H3 Moduflex Adapter Kit	
PS4020M4*CP	H1 Moduflex Adapter Kit	
PS4120M4*CP	H2 Moduflex Adapter Kit	
PS4220M4*CP	H3 Moduflex Adapter Kit	

Assembly Technique

- Connect the Wire Harness (Item 2) to the interconnect board in the valve stack.
- Fit O-ring (Item 1) into the slot in the Adapter Plate (Item 3).
- 3. Pass the Wire Harness through the Adapter Plate.
- 4. Screw the Adapter Plate to the Valve Stack. Torque the Screws (Item 4) to specification.
- 5. Fit Gasket (Item 5) into the Field Bus Adapter (Item 6).
- Pass the Wire Harness through the Adapter and make the connection to the Bus Module. Clamp the Bus Module with the Adapter.
- Screw the Bus Adapter to the Valve Stack. Torque Screws (Item 7) to specification.

Item 4

25-35 (2.8 - 4.0)

Item 7

8-10 (0.9 - 1.1)

Item Number	Description
1	O-ring
2	Interconnect Jumper Wire
3	Screw
4	Adapter Plate
5	Gasket
6	Adapter - Fieldbus (Moduflex)
7	Screw

Pneumatic Division Richland, Michigan 49083

Installation & Service Instructions V463

Isys H3 5599-2 Series Air Control Valves

ISSUED: October, 2009 Supersedes: June, 2009 Doc. #V463, EN #090875, Rev. 2

∕ WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:

- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this
 product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

⚠ WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and / or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

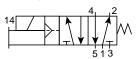
The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

⚠ WARNING

This valve / base has a standard ISO 5599/2: 1990 mounting interface. Valve bodies labeled Parker Model 45_, and bases marked ISO 2E, 3E, or 4E or simply O 2E, O 3E, or O 4 E (opposite the junction box under the valve body) - and without blue wires in the base - can be connected to this valve / base, but may have incompatible wiring. Base wiring may be reversed, resulting in unpredictable machine function that may cause injury, property damage, or death. Completely test the machine for correct function before using, and rewire if necessary. Call 1-800-272-7537 for special ISO Valve Service Bulletin No. VAL-SIF73.

Safety Guide

For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the **Pneumatic Division Safety Guide** at: www.parker.com/safety

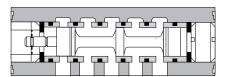

Introduction

Follow these instructions when installing, operating, or servicing the product.

Application Limits

These products are intended for use in general purpose compressed air systems only. Compliance with the rated pressure, temperature, and voltage is necessary.

5/2 Single Solenoid Valve


Solenoid Pilot

No Signal Applied: Inlet 1 connected to outlet 2; outlet 4 connected to exhaust 5; exhaust 3 closed.

Signal 14 Applied: Inlet 1 connected to outlet 4; outlet 2 connected to exhaust 3; exhaust 5 closed.

Listed below are the valve body service kits and solenoid replacement coils for Series H3A00001 valves.

Valve Body Service Kits. These kits contain parts needed for the reconditioning of a valve body. Included are all required gaskets and seals, and instructions for use.

Typical Spool-and-Sleeve Cross Section

H3A00002	Body to Base Gasket
H3A00003	Valve Repair Kit (Includes Internal Gaskets and Seals. Lapped Spool and Sleeve are <u>NOT</u> included)
H3A00004	Pilot Operator with 10mm Extended Non-locking Override and 120VAC / 60Hz Coil
H3A00005	Replacement Coil. 120VAC / 60Hz
H3A00006	Replacement Spool and Sleeve only
H3A00007	Replacement Pilot Body, less Coil and Nut
H3A00008	Replacement Jam Nut

⚠ WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.

Conversion to External Pilot Supply

To convert a H3A00001 Series ISO valve to external pilot supply:

Pressure in external supply line should be greater than inlet. If, for any reason, the external supply is lost or drops below inlet pressure (Port 1), the valve will switch back to internal pilot supply.

Valve Maintenance

Pneumatic equipment should be maintained only by persons trained and experienced in the maintenance of such equipment.

Supply Clean Air. Foreign material lodging in valves is a major cause of breakdowns. The use of a 5-micron-rated air filter located close to the valve is strongly recommended. The filter bowl should be drained regularly, and if its location makes draining difficult, the filter should be equipped with an automatic drain.

Check Lubricator Supply Rate. A lubricator should put a fine oil mist into the air line in direct proportion to the rate of air flow. Excessive lubrication can cause puddling in the valve and lead to malfunctions. For most applications an oil flow rate in the lubricator of one drop per minute is adequate.

Compatible Lubricants. Although this valve does not require air line lubrication, it may be used with lubricated air being supplied to other mechanisms. Some oils contain additives that can harm seals or other valve components and so cause the valve to malfunction. Avoid oils with phosphate additives (e.g., zinc dithiophosphate), and diester oils; both types can harm valve components. The best oils to use are generally petroleum base oils with oxidation inhibitors, an aniline point between 180°F (82°C) and 220°F (104°C), and an ISO 32 or lighter viscosity.

Some compatible oils are listed at the right. These oils, although believed to be compatible, could change without notice because manufacturers sometimes reformulate their oils. Therefore, use oils specifically compounded for air line service. If it is a synthetic oil, contact the oil manufacturer for compatibility information.

Cleaning the Valve. If the air supplied to the valve has not been well filtered, the interior of the valve may accumulate dirt and varnish which can affect the valve's performance.

A schedule should be established for cleaning all valves, the frequency depending on the cleanliness of the air being supplied.

To clean the valve use a solvent which will dry without leaving a residue. This is especially important for the spool-and-sleeve assembly. Do not use a chlorinated solvent or abrasive materials which can damage seals or do permanent damage to metal parts.

Compatible Lubricants		
Maker	Brand Name	
Amoco	American Industrial Oil 32; Amoco Spindle Oil C; Amolite 32	
Citgo	Pacemaker 32	
Exxon	Spinesstic 22; Teresstic 32	
Mobil	Velocite 10	
Non-Fluid Oil	Air Lube 10H/NR	
Shell	Turbo T32	
Sun	Sunvis 11; Sunvis 722	
Texaco	Regal R&O 32	
Union	Union Turbine Oil	

To reassemble the spool and sleeve put one drop of Anderol 735 (or equivalent lubricant) on each spool land. Insert the spool into the sleeve and rotate it several times to ensure even distribution of the lubricant. If the valve is used in a non-lubricated application, do not use a lubricant for reassembly which can dry out and leave a residue. Dry assembly of the spool and sleeve is preferable. Each spool and sleeve is a matched set, so care must be taken not to reverse the position of the spool in the sleeve.

Before inserting the spool-and-sleeve into the valve body, very lightly lubricate the O-rings with a lubricant such as MobilGrease 28. Do not use Anderol; it causes the O-rings to deteriorate.

Electrical Contacts. In the electrical circuits associated with the valve solenoids, keep all switches or relay contacts in good condition to avoid solenoid malfunctions.

Replace Worn Components. After long usage the spool and sleeve may show signs of wear. The valve can be completely reconditioned with the use of service kits. See page 1 for information about such kits.

Valve Specifications

Pressure Controlled

Temperature Range: 40° to 175°F (4° to 80°C). Flow Media: Filtered air; 5 micron recommended. Inlet Pressure: Vacuum to 150 psig (10 bar) Pilot Pressure: At least 30 psig (2 bar).

IMPORTANT NOTE: Please read carefully and thoroughly all the CAUTIONS on page 1.

Solenoid Pilot

Solenoids: Rated for continuous duty. Voltage and hertz ratings shown on valve.

Power Consumption: Each solenoid: 6.5 VA holding on 50 or

Temperature Range: Ambient: 40° to 120°F (4° to 50°C). Media: 40° to 175°F (4° to 80°C).

Flow Media: Filtered air; 5 micron recommended. Inlet Pressure: Vacuum to 150 PSIG (10 bar).

Pilot Pressure: At least 30 PSIG (2 bar).

Richland, Michigan 49083 269-629-5000 Installation & Service Instructions V464P

Isys HA, HB / H1, H2, H3 with Turck Fieldbus ISSUED: June, 2010

Supersedes: None Doc. #V459P, EN #100508

⚠ WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:

- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this
 product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

⚠ WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.

⚠ WARNING

Air exhausting from one valve into the exhaust gallery of the manifold assembly may momentarily pressurize other valve circuits open to the same gallery. Design the circuit such that there is no hazard or consequence of damage from this action.

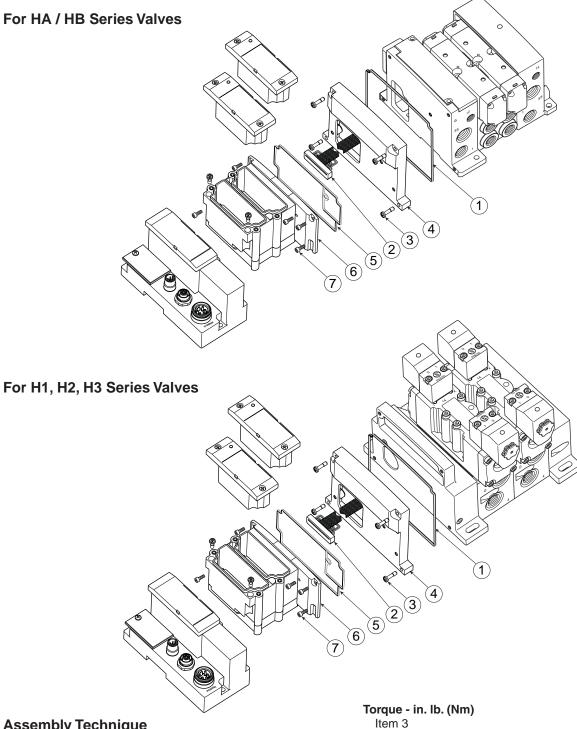
Safety Guide

For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the **Pneumatic Division Safety Guide** at: www.parker.com/safety

Introduction

Follow these instructions when installing, operating, or servicing the product.

Application Limits


These products are intended for use in general purpose compressed air systems only. Compliance with the rated pressure, temperature, and voltage is necessary - see Installation & Service Instructions packed with valve.

Kits - with 16 Solenoid Outputs

Kit Number	Description
PS5620T1*P	HA / HB Turck Adapter Kit
PS5624T1*P	HA / H2 Turck Adapter Kit
PS4025T1*CP	H1 / H2 / H3 Turck Adapter Kit
PS4026T1*CP	H1 / H3 Turck Adapter Kit
PS4027T1*CP	H1 / H2 Turck Adapter Kit
PS4028T1*CP	H2 / H3 Turck Adapter Kit
PS4020T1*CP	H1 Turck Adapter Kit
PS4120T1*CP	H2 Turck Adapter Kit
PS4220T1*CP	H3 Turck Adapter Kit

Kits - with 32 Solenoid Outputs

Kit Number	Description
PS5620T2*P	HA / HB Turck Adapter Kit
PS5624T2*P	HA / H2 Turck Adapter Kit
PS4025T2*CP	H1 / H2 / H3 TurckAdapter Kit
PS4026T2*CP	H1 / H3 Turck Adapter Kit
PS4027T2*CP	H1 / H2 Turck Adapter Kit
PS4028T2*CP	H2 / H3 Turck Adapter Kit
PS4020T2*CP	H1 Turck Adapter Kit
PS4120T2*CP	H2 Turck Adapter Kit
PS4220T2*CP	H3 Turck Adapter Kit

Assembly Technique

1. Connect the Wire Harness (Item 2) to the interconnect board in the valve stack.

- 2. Fit Gasket (Item 1) into the slot in the Adapter Plate (Item 4).
- 3. Pass the Wire Harness through the Adapter Plate.
- 4. Screw the Adapter Plate to the Valve Stack. Torque the Screws (Item 3) to specification.
- 5. Fit Gasket (Item 5) into the Field Bus Adapter (Item 6).
- 6. Pass the Wire Harness through the Adapter and make the connection to the Bus Module. Clamp the Bus Module with the Adapter.
- 7. Screw the Bus Adapter to the Valve Stack. Torque Screws (Item 7) to specification.

25-35 (2.8 - 4.0)

Item 7

8-10 (0.9 - 1.1)

Item Number	Description			
1	Gasket			
2	Interconnect Jumper Wire			
3	Screw			
4	Adapter Plate			
5	Gasket			
6	Adapter - Fieldbus (Turck)			
7	Screw			

Richland, Michigan 49083 269-629-5000

Installation & Service Instructions V467P

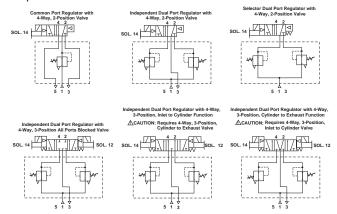
isys H1 Sandwich Regulators

ISSUED: August, 2005 Supersedes: None Doc.# V-467P, NPR# 041177

⚠ WARNING

- To avoid unpredictable system behavior that can cause personal injury and property damage:
- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- · Service according to procedures listed in these instructions.
- Installation, service, and conversion of these produc ts must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

⚠ WARNING


FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and / or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Introduction

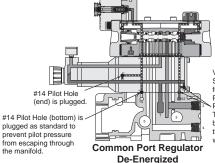
Follow these instructions when installing, operating, or servicing the product.

NOTE: The Regulators shown on the 14 and 12 End of Independent Port and Selector Units may be replaced with a By-Pass Plate to provide unregulated pressure.

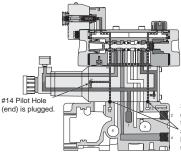
Application Limits

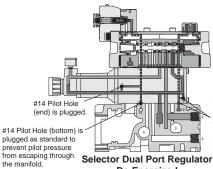
These products are intended for use in general purpose compressed air systems only.

Operating Pressure Range: Maximum 145 PSIG (1000 kPa)


Ambient Temperature Range: -15°C to 49°C (5°F to 120°F)

H1 Sandwich Regulator


NOTE: For all regulator options, valve must be set up for external pilot by assembling the gasket under the solenoid operator as shown here.


Valve must be set up for External Pilot. Sandwich Regulator configured for External Pilot with the Pilot Plug moved from the bottom #12 Pilot Hole to end #12 Pilot Hole. This allows External Pilot pressure from base to feed through the regulator to the valve without communicating with Main Line Pressure.

with External Pilot Shown

Sandwich Regulator has standard configuration of Internal Pilot with the Pilot Plug in the bottom #12 and #14 Pilot Hole which prevents line pressure from escaping through the manifold.

Independent Single Port Regulator De-Energized with Internal Pilot Shown

Sandwich Regulator configured for External Pilot with the Pilot Plug moved from the bottom #12 Pilot Hole to end #12 Pilot Hole. This allows External Pilot pressure from base to feed through the regulator to the valve without communicating with Main Line Pressure.

Selector Dual Port Regulator De-Energized with External Pilot Shown H1 Sandwich Regulators V467P

Installation

Remove pressure and electrical connections before installation.

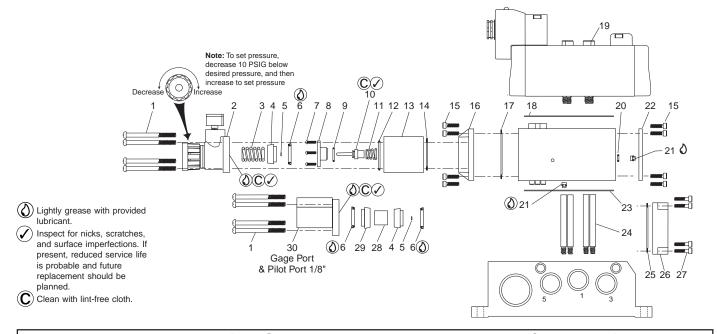
- After removing Valve from Base, install four Mounting Studs (24) from Regulator Kit to the Base, torque finger tight.
- 2. Place the Gasket (23) over the Studs and on the Base.
- 3. Install Regulator over Studs. Carefully engage the Electrical Plug (5599-2).
- Install Valve onto Regulator. Carefully engage the Electrical Plug (5599-2).
- Tighten Valve Bolts (19) from 2.8 to 3.9 Nm (25 to 35 in-lbs).
- Apply main pressure and check for leaks repeat assembly if leaks are present.

NOTE: If both a sandwich flow control and sandwich regulator are to be installed, the flow control should be installed between the regulator and the base. Both sets of studs should be installed to base before installing the flow control.

Lubrication

Factory pre-lubed. If lubricating in service, use Parker F442 oil or equivalent paraffin based mineral oil with 150 to 200 SSU viscosity @100°F.

CAUTION: Do not use oils that are synthetic, reconstituted, have an alcohol content or a detergent additive.


Sandwich Regulator Kits

Kit Number	Description	Kit Includes Item# (Qty.)
PS4039P	Repair Kit	4, 5, 6, 9, 10,11, 12, 29
PS4050030P	Spring - 30 PSIG	3
PS4050060P	Spring - 60 PSIG	3
PS4050125P	Spring - 125 PSIG	3
PS4009P	Pilot Plug Kit	21 (20)
PS4040P	Mounting Studs	24 (12)
PS4048P	By-Pass Plate	25, 26, 27 (4)

Component List

The components listed below are for identification purposes only, Some of these components are available in various Sandwich Regulator Kits, some are not available due to special factory assembly. Individual components are <u>not sold separately</u> since all kit components should be installed when serviced.

Item	Description	Torque Nm (In. / Lb.)
1	Screw, Regulator Block	0,9 to 1,4 (8 to 12)
2	Bonnet Assembly	
3	Spring, Control (30, 60 or 125 PSIG)	
4	Piston, Relieving (Includes vent hole)	
5	O-ring, Piston Vent	
6	Lip Seal, Piston	
7	Screw, Seat Plate	0,3 to 0,6 (3 to 5)
8	Seat Plate	
9	O-ring, Seat Plate	
10	Poppet Assembly	
11	Spring, Poppet Return	
12	O-ring, Bonnet / Body Seal	
13	Body, Regulator	
14	Gasket, Regulator Block	
15	Screw, End Plate	1,1 to 1,7 (10 to 15)
16	Adapter, Regulator	
17	Gasket, Regulator Block	
18	Gasket, Valve to Regulator Block	
19	Screw, Valve to Mtg. Stud	2,8 to 3,9 (25 to 35)
20	O-ring	
21	Plug, Pilot	
22	End Plate	
23	Gasket, Regulator Base	
24	Stud, Mounting	Finger Tight
25	Gasket, Bypass Plate	
26	Bypass Plate, Dual Pressure	
27	Screw, Bypass Plate	1,1 to 1,7 (10 to 15)
28	Spacer, Air Pilot	
29	Piston, Non-Relieving (No vent hole)	
30	Bonnet, Air Pilot	

For all Instruction Sheets, go to www.parker.com/pneumatic

V450P - isys HA 26mm & HB 18mm ISO 15407-2 Valve Service

V452P - isys HA & HB ISO 15407-2 Sandwich Flow Controls

V453P - isys HA & HB ISO 15407-2 Manifold Installation

V454P - isys HA & HB Sandwich Regulators

V467P - isys H1 Sandwich Regulators

V468P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Sandwich Flow Controls V469P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Subbase & Manifold Installation

V470P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Valve Service

V471P - isys H2 & H3 Sandwich Regulators

Richland, Michigan 49083 269-629-5000

Installation & Service Instructions V468P

isys H1, H2 & H3, ISO 5599-1, 5599-2 Sandwich Flow Controls

ISSUED: August, 2005 Supersedes: None Doc.# V-468P, NPR# 041177

⚠ WARNING

- To avoid unpredictable system behavior that can cause personal injury and property damage:
- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- · Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

⚠ WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and / or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

Introduction

Follow these instructions when installing, operating, or servicing the product.

Installation & Operating Instructions:

A Flow Control "Sandwich" controls the flow of air from the valve exhaust ports to atmosphere.

The Flow Control "Sandwich" is intended for use with the respective subbase or manifold mounted valves. H1, H2, & H3 valves and flow controls are designed in conformance to ISO 5599/1, 5599/2, Sizes 1, 2, & 3.

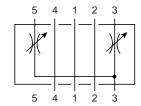
H1, H2, & H3 Flow Control "Sandwiches" are only recommended for use with Common Port versions of Sandwich Regulators. The Flow Control is to be assembled between the regulator and the subbase or manifold.

If used with Single Port or Independent Port versions of Sandwich Regulators functionality is limited as follows:

Flow Control "Sandwich" used in conjunction with Single or Independent Port versions of Sandwich Regulator - Adjust speed with the adjusting screw labeled "3". It adjusts the speed of exhaust flow from cylinder ports "2" and "4". Independent speed adjustment is not possible. This could result in different exhaust speeds for cylinder ports "2" and "4" since line pressure is supplied to one cylinder port and a regulated pressure is supplied to the other. The other adjusting screw is non-functional.

Lubrication

Factory Pre-lubed. If lubricating in service, use Parker F442 oil or equivalent paraffin based mineral oil with 150 to 200 SSU viscosity @100°F.


Application Limits:

These products are intended for use in general purpose compressed air systems only.

Operating Pressure Range: Maximum 145 PSIG, 1000kPa

Ambient Temperature Range: -18°C to 60°C (0°F to 140°F)

ANSI Symbol:

Installation:

- Remove the valve from the subbase or manifold (if assembled) by removing and retaining the four mounting screws (A).
- Clean all mating surfaces of valve, subbase or manifold and Flow Control "Sandwich" of dust and dirt.
- 3. Install male-female tie rods **(C)** to base. Tighten the tie rods using hex broached on the inside of the female end.

Internal Hex					
H1 H2 H3					
M3	M4	M5			

- Slide gasket (D) over the male-female tie rods protruding from top of subbase or manifold, lining up electrical plug cavity.
- Slide Flow Control "Sandwich" over the male-female tie rods (C) protruding from top of subbase or manifold and press down on flow control to seat electrical plug (if applicable).

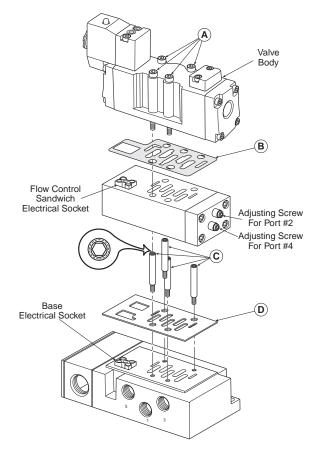
- 6. Check to insure that the gasket **(B)** on the bottom of the valve body is still properly seated in its gasket track.
- 7. Place valve on top of Flow Control "Sandwich" lining up all mounting holes and press down on flow control to seat electrical plug (if applicable).
- Assemble valve, flow control and subbase or manifold together with the valve mounting screws (A). Tighten as follows:

ISO Spec	Size	Sandwich Flow Control Model No.	Torque
5599/1	H1	PS4042P	3.4 to 4.0 Nm
5599/2	H1	PS4035P	(30 to 35 in-lb)
5599/1	H2	PS4142P	5.1 to 5.6 Nm
5599/2	H2	PS4135P	(45 to 50 in-lb)
5599/1	H3	PS4242P	9.0 to 11.3 Nm
5599/2	H3	PS4235P	(80 to 100 in-lb)

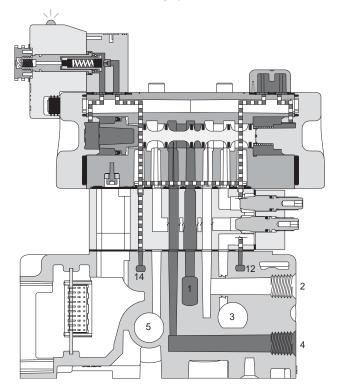
Apply inlet pressure and check for leaks. If any are present, do not operate the valve, repeat this assembly process until satisfactory.

Adjustment Procedures:

Both adjusting screws are located at the 12 End of the assembly. Adjustment screw labeled "5" controls the flow of air from cylinder Port 4 to exhaust Port 3. With a double solenoid valve this occurs when Operator #12 is actuated. With a single solenoid valve this occurs when Operator #14 is not actuated. Adjustment screw labeled "3" controls air from cylinder Port 2 to exhaust Port 3.


- 1. Turn both adjustment screws clockwise until fully closed and then counterclockwise slightly.
- 2. While cycling valve with cylinder adjust clockwise to decrease speed or counterclockwise to increase speed.

Cv Values


	Flow Control	Cv			
Size	Part Number	1-2	1-4	2-3	4-3
H1	PS4042P	1.4	1.2	.09	.08
H2	PS4142P	2.2	2.2	1.5	1.6
H3	PS4242P	4.3	4.4	2.8	3.7

Tie Rod Kits

Valve	Qty.	Kit Number
H1	Tie Rods (12)	PS4036P
H2	Tie Rods (12)	PS4136P
H3	Tie Rods (12)	PS4236P

H1 Shown

H1 Shown

For all Instruction Sheets, go to www.parker.com/pneumatic

V450P - isys HA 26mm & HB 18mm ISO 15407-2 Valve Service

V452P - isys HA & HB ISO 15407-2 Sandwich Flow Controls

V453P - isys HA & HB ISO 15407-2 Manifold Installation

V454P - isys HA & HB Sandwich Regulators

V467P - isys H1 Sandwich Regulators

V468P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Sandwich Flow Controls

V469P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Subbase & Manifold Installation

V470P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Valve Service

V471P - isys H2 & H3 Sandwich Regulators

Richland, Michigan 49083 269-629-5000

Installation & Service Instructions V469P

isys H1, H2 & H3, ISO 5599-1, 5599-2 Subbase & Manifold Installation

ISSUED: May, 2014

Supersedes: February, 2014 Doc. #V469P, EN #140327 Rev. G

<u>√</u>! WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:

- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this
 product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

. WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.

∱ WARNING

Air exhausting from one valve into the exhaust gallery of the manifold assembly may momentarily pressurize other valve circuits open to the same gallery. Design the circuit such that there is no hazard or consequence of damage from this action.

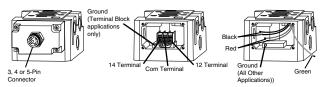
Safety Guide

For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the **Pneumatic Division Safety Guide** at: www.parker.com/safety

Introduction

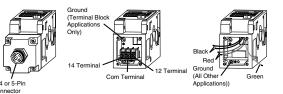
Follow these instructions when installing, operating, or servicing the product.

Application Limits


These products are intended for use in general purpose compressed air systems only. Compliance with the rated pressure, temperature, and voltage is necessary - see Installation & Service Instructions packed with valve.

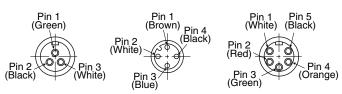
Wiring Instructions for Individual Base Wiring

- Follow all requirements for local and national electrical codes.
- Remove end cover from base by backing out the two screws.
- 3. Connect wires as shown in chart.
- 4. An external ground connection must be attached to the green ground screw of every base in an assembly.
- 5. Disregard unused wires or terminals.
- 6. Reassemble cover to base by tightening screws from 0.8 to 1.0 Nm (7 to 9 in-lbs).


Connections

	14 Solenoid	12 Solenoid
Bases with Wires	Black Wires	Red Wires
Bases with Terminal Block (Will accept 18 to 24 Gauge Wires)	14 and Com Terminals	12 and Com Terminals

Subbase Subbase
With Auto C, F, G With Terminal Block


Subbase With Wires

Manifold With Auto C, F, G

Manifold With Terminal Block Manifold With Wires

Wiring - Auto C, F, G

3-Pin Mini Enclosure "7" 4-Pin M12 Enclosure "8" 5-Pin Mini Enclosure "9"

	3-Pin Mini Encl '7'	4-Pin M12 Encl '8'		5-Pin Mini Encl '9'			
Wiring Type	C, F, G	С	F	G	C	F	G
Pin #1	Gnd	14	N/A	12	12	14	12
Pin #2	14	Gnd	12	N/A	12	12	14
Pin #3	Com	Com	Com	Com	Gnd	Gnd	Gnd
Pin #4	N/A	12	14	14	14	12	14
Pin #5	N/A	N/A	N/A	N/A	14	14	12

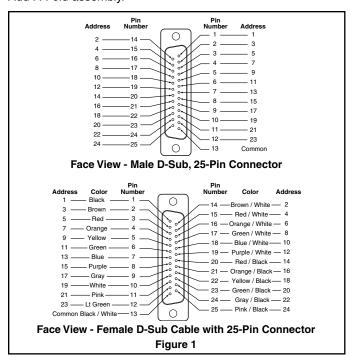
Wiring Instructions for Manifold Interconnect Wiring

Manifold Interconnect Wiring

⚠ CAUTION: An interruption of 10 mil

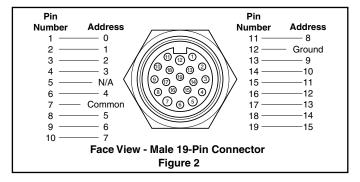
⚠ CAUTION: An interruption of 10 milliseconds or greater to the power supplied to the solenoid of a solenoid operated valve may cause the valve to shift. Provision must be made to prevent power interruption of this duration to avoid unintended, potentially hazardous, consequences.

For connection simplicity, the Interconnect Wiring System has a single common lead with an amperage limit of 3 amps continuous service. The following chart indicates the upper limit of solenoids that can be energized <u>simultaneously</u>.

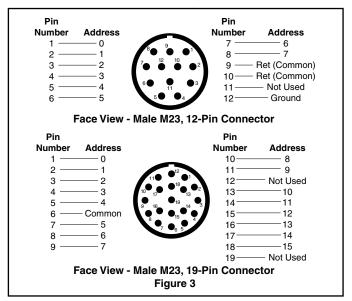

Voltage	25-Pin	19-Pin	Single	
	Code	D-Sub	Round	12-Pin M23
12VDC	42	13	13	8
24VAC*	42	24	16	8
24VDC	B9	20	16	8
120VAC*	23	24	16	8

^{*} Not CSA certified for 25-Pin, D-Sub option.

The Interconnect Wiring System has great flexibility to meet user wiring needs. Each manifold base must be ordered with either a single or double address function. The single address circuit board works with single solenoid valves only. The double address circuit board works with both single and double solenoid valves. The end cover of each manifold base is labeled either "Single Address" or "Double Address". Power signals used to shift the valves can be connected using several different types of electrical connectors. These electrical connectors reside in the end plate kit and can be either a 25-Pin D-Sub (Figure 1), a 19-Pin Brad Harrison connector (Figure 2), or a 12/19-Pin M23 connector (Figure 3). A single address base uses one signal; a double address base uses two signals, the first to the 14 solenoid, the second to the 12 solenoid. Signal usage is sequential through the bases. Any combination of single or double addresses may be used.


25-Pin D-Sub Connector - Pin Out

Common Pin "13" is rated for 3 amps. Common wire rating MUST be greater than total amperage of all solenoids on an Add-A-Fold assembly.


19-Pin Brad Harrison Connector - Pin Out

Common Pin "7" is rated for 8 amps. Common wire rating MUST be greater than total amperage of all solenoids on a Add-A-Fold assembly.

M23 Connector (12 & 19-Pin) - Pin Out

Common Pins "9" and "10" are rated for 8 amps. Common wire rating MUST be greater than total amperage of all solenoids on a Add-A-Fold assembly.

Grounding Instructions

The Collective Wiring addressing system is grounded by connecting a **user supplied case wire** to the outside ground screw on the End Plate. Use 18 gauge, or larger, case wire.

The Collective Wiring 25-Pin D-Sub internal ground is made by connecting the loose ring terminal to the ground screw provided at the internal wire passageway.

The collective wiring 12-Pin or 19-Pin Round Connector internal ground is made by connecting the lead wire with a ring terminal (ground wire) to the ground screw provided at the internal wire passageway.

An earth ground is recommended for all voltages. Follow standard electrical protocol.

Air Piping Assembly

Port Connections:

Manifold stacks / subbases have three common air passage galleries. For Single pressure piping, connect the inlet supply to Port #1; Ports #3 and #5 are then the exhaust ports. For Dual pressure piping, connect the two inlet supplies to Port #3 and Port #5 (it is recommended that the higher pressure

be supplied to Port #3); Port #1 is then the exhaust port. See **Manifold Isolation**, if the application requires groups of valves with different pressure supplies. Connect the cylinder ports #2 and #4 to the cylinder or other device to be supplied with air from the valve. These ports are at the end (and bottom, if so ordered) of each base.

Note: If Pressure is supplied to one end of a manifold, the pressure port(s) on the opposite end must be plugged.

External Pilot Connections:

An external pilot supply is used when the main inlet pressure is below the minimum valve operating pressure or when the pilot pressure is different from the main inlet pressure. Supply pilot air to either Port #14 or Port #12 and plug the one not being

Remote Pilot Signal Connections:

Manifolds:

For remote pilot signal valves, connect the pilot signal to the Remote Pilot Access Plate mounted directly under the valve body. NOTE: Signals into the remote pilot plate do not connect to the #12 or #14 galleries on the End Plates. See Remote Pilot Access Plate instructions.

Subbases:

Connect pilot signal to the #12 and #14 Ports.

Manifold Assembly with Interconnect Wiring

The Interconnect Wiring System (Figure 4 & 5) makes the electrical connection user friendly. Each individual manifold base carries its own connector circuit board which self aligns and plugs into the circuit board of the mating manifold base. The power is supplied at the left end of the stack (as you are viewing the cylinder ports) by means of a plug-in harness or serial module.

The stack assembly is built from left to right (viewing the cylinder ports). Start with the Interconnect Wiring End Plate and add manifold bases as required. If the stack includes transitions from one valve size to another, the left most size is the smallest and then progressing to successively larger sizes. Follow the techniques described below for the easiest assembly. Consult the torque chart for screw tightening specifications.

For H1 Valves (See Figure 4)

- 1. Lay Interconnect Wiring End Plate (Item 1 / 7) port side down (when looking at Manifold Cylinder Ports) and expose the wiring harness. Locate Gasket (Item 2) in place on the Interconnect Wiring End Plate (Item 1).
- 2. Bring the first station Manifold Base to the Interconnect Wiring End Plate and plug in the two black connectors

from the harness into the base connector circuit board. The connectors are keyed, there is only one assembly possible. Do not twist cables. Attach the Base to the Interconnect Wiring End Plate by finger tightening the three Bolts (Item 4). Continue to mount each successive Gasket (Item 2) and Base (Item 3) to the previous Base. Lay the entire manifold on a flat surface, align for straightness and alternately tighten each screw incrementally to torque specifications in the torque chart. Place the right hand End Plate (Item 5) on last base and tighten screws (see torque chart).

- NOTE: Transition Plates or Isolation Plugs must be properly placed as the construction of the stack progresses. See individual sections of this bulletin.
- Add valves and accessories to the manifold (if not already attached). The final assembly should be leak and electrically tested before operation.

Manifold / End Plate Assembly Torque Values

Torque - in.lb. (Nm)	Item 4	40 to 50 (4.5 to 5.6)	
5			
(2)	10		

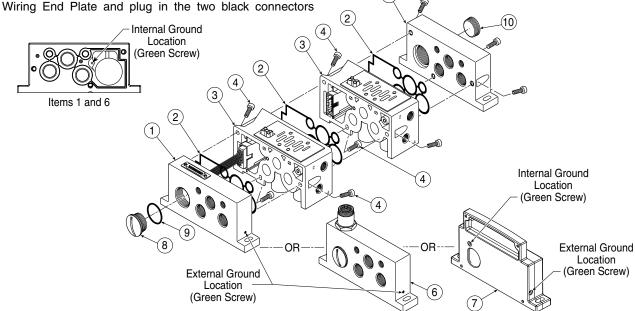


Figure 4 (H1 Valves Shown)

Item # Description Item # Description

- 1 Interconnect Wiring End Plate (25-Pin, D-Sub Connector)
- 2 Molded Gasket
- 3 Manifold Base
- 4 Mounting Screws
- 5 Right Hand End Plate

- 6 Interconnect Wiring End Plate (12 or 19-Pin Connector)
- 7 Interconnect Wiring End Plate (Isysnet / Turck)
- 8 Dome Plug
- 9 O-ring
- 10 Plastic Plug

For H2 & H3 Valves (See Figure 5)

- 1. Lay Interconnect Wiring End Plate (Item 1 / 7) port side down (when looking at Manifold Cylinder Ports) and expose the wiring harness. Locate Gasket (Item 2) in place on the Interconnect Wiring End Plate (Item 1).
- 2. Bring the first station Manifold Base to the Interconnect Wiring End Plate and plug in the two black connectors from the harness into the base connector circuit board. The connectors are keyed, there is only one assembly possible. Do not twist cables. Attach the Base to the Interconnect Wiring End Plate by finger tightening the three Bolts (Item 5). Continue to mount each successive Gasket (Item 2) and Base (Item 4) to the previous Base. Lay the entire manifold on a flat surface, align for straightness and alternately tighten each screw incrementally to torque specifications in the torque chart. Place the right hand End Plate (Item 6) on last base and tighten screws (see torque chart).
- 3. NOTE: Transition Plates or Isolation Plugs must be properly placed as the construction of the stack progresses. See individual sections of this bulletin.
- 4. Add valves and accessories to the manifold (if not already attached). The final assembly should be leak and electrically tested before operation.

Manifold / End Plate Assembly Torque Values

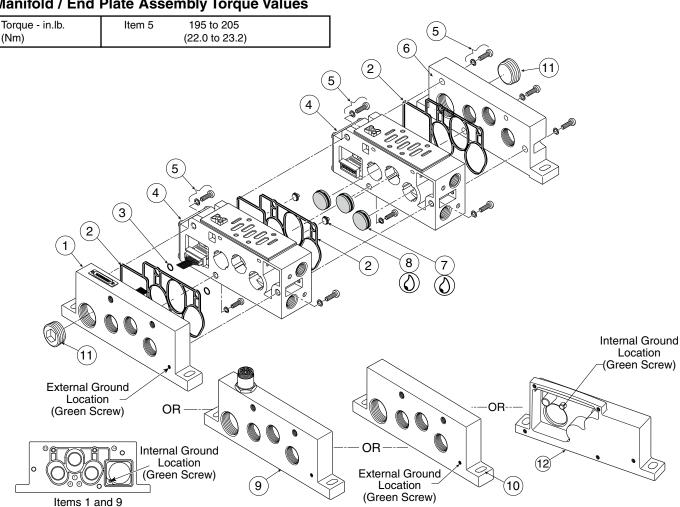
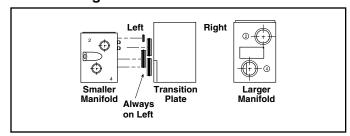


Figure 5 (H2 Manifold Assembly Shown)

Item # Description

- Interconnect Wiring End Plate (25-Pin, D-Sub Connector) 1
- 2 Molded Gasket
- 3 Pilot Gallery O-Rings
- 4 Manifold Base (H2)
- 5 Mounting Screw & Lockwasher
- Right Hand End Plate

Description Item


- Isolation Plugs 7
- Pilot Isolation Plug 8
- 9 Interconnect Wiring End Plate (12 or 19-Pin Connector)
- 10 Left Hand End Plate
- Pipe Plug
- Interconnect Wiring End Plate (Isysnet / Turck)

H1 to H2 Manifold Assembly (See Figure 6)

The smaller manifold must be on the left side of the Transition Plate. The Transition Plate (Item 6) acts as a combination right end plate for the smaller manifold and left end plate for the larger manifold.

- 1. Lay Left Hand End Plate (when looking at cylinder ports) port side down. Place Gasket in gasket track.
- 2. Add Station 1 Manifold and tighten all 3 bolts finger tight.
- 3. Build manifold vertically by adding Gaskets, Isolator Plugs, Transition Plate and remaining Manifolds.
- 4. Lay entire manifold on a flat surface and tighten screws to torque specification.
- Place Right Hand End Plate and tighten screws to torque specifications in chart.
- Add Valves and Accessories. All Manifold Assemblies should be leak tested before operation.

Isolator Plug Locations with Transition Plates

Manifold / End Plate Assembly Torque Values

Torque - in.lb. (Nm)	Item 4	40 to 50 (4.5 to 5.6)
Torque - in.lb. (Nm)	Item 10	195 to 205 (22.0 to 23.2)

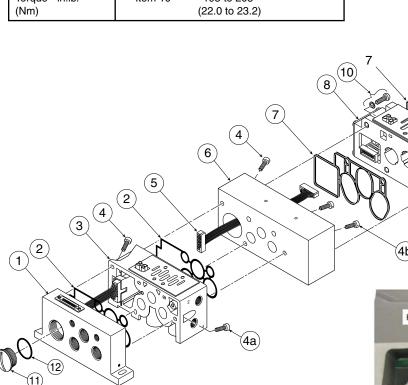
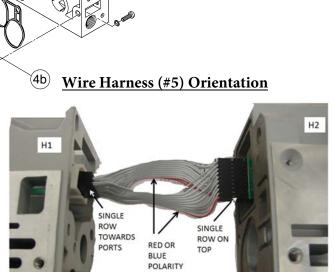



Figure 6 (H1 to H2 Transition Assembly)

Description

Item # Description

- Interconnect Wiring Plate (25-Pin, D-Sub Connector Shown) (H1)
- 2 Manifold Gasket (H1)
- 3 Manifold Base (H1)
- 4a Mounting Screws (M6 x 16mm)
- 4b Mounting Screws (M6 x 25mm)
- 5 Wire Harness
- 6 Transition Plate (H1 to H2)

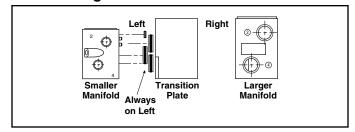
Item

(10)

(9)

- 7 Manifold Gasket (H2)8 Manifold Base (H2)
- -- -- -- -- --
- 9 Right End Plate (H2)
- 10 Mounting Screws & Lock Washers (H2)
- 11 Dome Plug
- 12 O-ring
- 13 Pipe Plug

H1 to H3 Manifold Assembly (See Figure 7)


The smaller manifold must be on the left side of the Transition Plate. The Transition Plate (Item 6) acts as a combination right end plate for the smaller manifold and left end plate for the larger manifold.

- 1. Lay Left Hand End Plate (when looking at cylinder ports) port side down. Place Gasket in gasket track.
- 2. Add Station 1 Manifold and tighten all 3 bolts finger tight.
- 3. Build manifold vertically by adding Gaskets, Isolator Plugs, Transition Plate and remaining Manifolds.
- 4. Lay entire manifold on a flat surface and tighten screws to torque specification.
- 5. Place Right Hand End Plate and tighten screws to torque specifications in chart.
- 6. Add Valves and Accessories. All Manifold Assemblies should be leak tested before operation.

Manifold / End Plate Assembly Torque Values

Torque - in.lb. (Nm)	Item 4	40 to 50 (4.5 to 5.6)
Torque - in.lb. (Nm)	Item 10	195 to 205 (22.0 to 23.2)

Isolator Plug Locations with Transition Plates

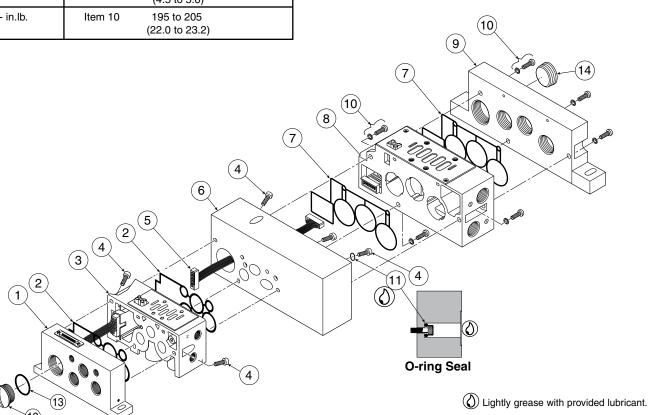
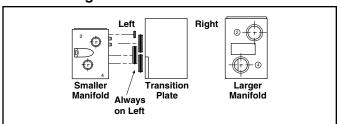


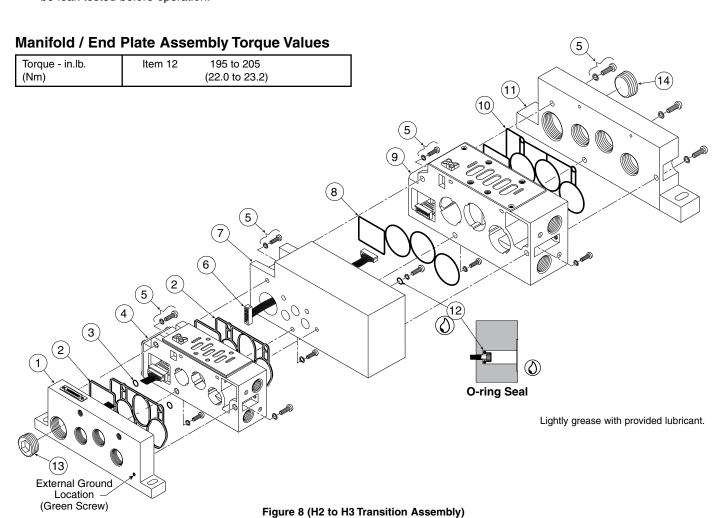
Figure 7 (H1 to H3 Transition Assembly)

Description Item # Interconnect Wiring Plate (25-Pin, D-Sub Connector Shown) (H1)

- 2 Manifold Gasket (H1)
- 3 Manifold Base (H1)
- 4 Mounting Screws (H1)
- Wire Harness
- Transition Plate (H1 to H3)
- 7 Manifold Gasket (H3)

Description Item


- 8 Manifold Base (H3)
- 9 Right End Plate (H3)
- 10 Mounting Screws & Lock Washers (H3)
- 11 O-ring Seal Washer
- 12 Dome Plug
- 13 O-Ring
- 14 Pipe Plug


H2 to H3 Manifold Assembly (See Figure 8)

The smaller manifold must be on the left side of the Transition Plate. The Transition Plate (Item 14) acts as a combination right end plate for the smaller manifold and left end plate for the larger manifold.

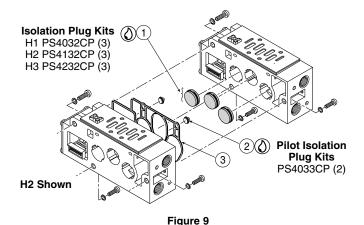
- Lay Interface Plate (Item 7) with O-ring channels facing up. Place O-rings in correct channels.
- 2. Add Station 1 Manifold and tighten all 3 bolts finger tight.
- 3. Build manifold vertically by adding Gaskets, Isolator Plugs, Transition Plate and remaining Manifolds.
- 4. Lay entire manifold on a flat surface and tighten screws to torque specification.
- Place Right Hand End Plate and tighten screws to torque specifications in chart.
- 6. Assemble Collective Wiring Module (Items 1 through 6) to Interface Plate (Item 7).
- Add Valves and Accessories. All Manifold Assemblies should be leak tested before operation.

Isolator Plug Locations with Transition Plates

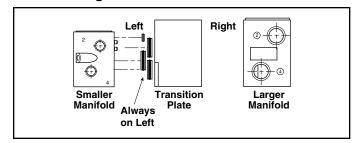
Item # Description

- 1 Interconnect Wiring Plate (25-Pin, D-Sub Connector)
- 2 Molded Gasket
- 3 Pilot Gallery O-Rings
- 4 Manifold Base (H2)
- 5 Mounting Screw & Lockwasher
- 6 Wire Harness
- 7 Transition Plate (H2 to H3)

Item # Description


- 8 Manifold to Transition Plate Gasket (H3)
- 9 Manifold Base (H3)
- 10 Manifold to Transition Plate Gasket (H3)
- 11 Right End Plate (H3)
- 12 O-ring Seal Washer
- 13 Pipe Plug
- 14 Pipe Plug

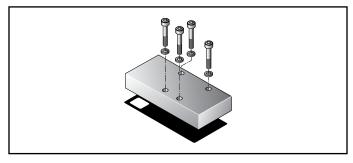
Manifold Isolation Assembly


Inlet & exhaust galleries, and pilot supply / signal galleries may be isolated from those in adjacent manifolds through the use of isolation plugs. Note: air piloted valves, whether single or double, will need to be isolated at 14 and / or 12 galleries to prevent improper air pressure signals reaching adjacent valves. Figure 9 indicates typical assembly locations of the Main Gallery Plugs (Item 1) and the Pilot Gallery Plugs (Item 2).

The following describes how to install plugs:

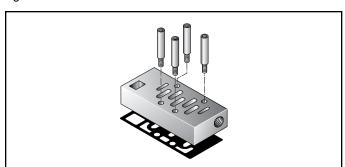
- Determine which gallery is to be isolated between two manifolds.
- 2. Use the large Plugs (Item 1) from the service kits to isolate manifolds from the main gallery(s).
- Apply a light coating of grease to isolation plug and insert it into counterbore of left manifold base.
- 4. Apply a light coating of grease to Gasket (Item 3) and assemble in manifold groove.
- Assemble plugged manifold into manifold bank in its proper position.
- Apply main pressure and check for leaks. If any are present, do not operate the valve - repeat the reassembly process until satisfactory.

Isolator Plug Locations with Transition Plates


Station Blanking Plate

Use top Blanking Plate on a Manifold to reserve a place for a valve that will be added later to the manifold bank or to remove a valve from a manifold without having to remove the manifold block from the manifold bank.

Place Gasket and Blanking Plate on Manifold and assemble using Mounting Screws provided with kit. Tighten screws to torque specifications shown in the torque chart below.


Apply main pressure and check for leaks. If any are present, do not operate valves on the manifold bank - repeat the assembly process until satisfactory.

Valve Series	H1	H2	Н3
Torque - in. lb.	25 to 35	115 to 130	120 to 140
(Nm)	(2.8 to 3.9)	(12.9 to 14.7)	(13.6 to 15.8)

Remote Pilot Access Plate

The Remote Pilot Access Plate provides access to the #12 and #14 valve pilot galleys for an H1, H2 & H3 manifold. It is required for Single or Double Remote Pilot Valves on a manifold. Hand tighten the tie rods into the base.

Hi-Flow Manifold Repair Kits

	•	
Kit Number	Description	Item Number
PS4012P	H1 Manifold to Manifold Screws (3)	3
PS4013P	H1 Manifold to Manifold Gasket (1)	2
PS4112P	H2 / H3 Manifold to Manifold	
	Screws and Washers (12)	10
PS4113P	H2 Manifold to Manifold Gasket (1)	12
PS4213P	H3 Manifold to Manifold Gasket (1)	12

For all Instruction Sheets, go to www.parker.com/pneumatic

V450P - isys HA 26mm & HB 18mm ISO 15407-2 Valve Service

V452P - isys HA & HB ISO 15407-2 Sandwich Flow Controls

V453P - isys HA & HB ISO 15407-2 Manifold Installation

V454P - isys HA & HB Sandwich Regulators

V467P - isys H1 Sandwich Regulators

V468P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Sandwich Flow Controls

V469P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Subbase & Manifold Installation

V470P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Valve Service V471P - isys H2 & H3 Sandwich Regulators

Richland, Michigan 49083 269-629-5000 Installation & Service Instructions V470P

H1, H2 & H3, ISO 5599-1, 5599-2 Valve Service

ISSUED: December, 2011 Supersedes: July, 2007 Doc.# V470P, EN# 110994, Rev. 3

∕ WARNING

- To avoid unpredictable system behavior that can cause personal injury and property damage:
- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

⚠ WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.

This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and / or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

WARNING

This valve / base has a standard ISO 5599/2: 1990 mounting interface. Valve bodies labeled Parker Model 45_, and bases marked ISO 2E, 3E, or 4E or simply O 2E, O 3E, or O 4 E (opposite the junction box under the valve body) - and without blue wires in the base - can be connected to this valve / base, but may have incompatible wiring. Base wiring may be reversed, resulting in unpredictable machine function that may cause injury, property damage, or death. Completely test the machine for correct function before using, and rewire if necessary. Call 1-800-272-7537 for special ISO Valve Service Bulletin No. VAL-SIF73.

Safety Guide

For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the **Pneumatic Division Safety Guide** at: www.parker.com/safety

Introduction

Follow these instructions when installing, operating, or servicing the product.

⚠ CAUTION: It is recommended that double solenoid and double remote pilot operated 2-Position valves be mounted so that the axis of the valve spool is in the horizontal plane.

Lubrication

Factory Pre-lubed. If lubricating in service, use Parker F442 oil or equivalent paraffin based mineral oil with 150 to 200 SSU viscosity @100°F.

Application Limits

These products are intended for use in general purpose compressed air systems only. Compliance with the rated pressure, temperature, and voltage is necessary.

Operating Pressure Range

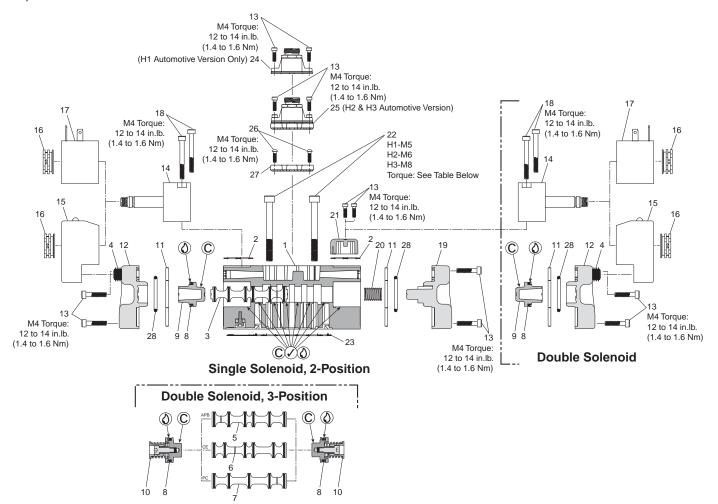
Maximum: 145 PSIG (1000 kPa) Minimum: See Chart Below

Operator / Function	Internal Pilot	Min. kPa (PSIG) H1	Min. kPa (PSIG) H2	Min. kPa (PSIG) H3		
1	Single Solenoid - 2-Pos	173	173	241		
2	Double Solenoid- 2-Pos	(25)	(25)	(35)		
3	Single Remote Pilot - 2-Pos	Vacuum	Vacuum	Vacuum		
4	Double Remote Pilot - 2-Pos	Vacuum	Vacuum	Vacuum		
5, 6, 7	Double Solenoid - 3-Pos	241	345	345		
	APB, CE, PC	(35)	(50)	(50)		
8, 9, 0 Double Remote Pilot - 3-Pos		Vacuum	Vacuum	Vacuum		
	APB, CE, PC					
E	Single Solenoid Pilot - 2-Pos					
	Air Return / Spring Assist	241	310	310		
F	Single Remote Pilot - 2-Pos	(35)	(45)	(45)		
	Air Return / Spring Assist					
	External Pilot*	*	*	*		
All	H1, H2, H3	Vacuum	Vacuum	Vacuum		

*External Pilot Pressure / Remote Pilot Signal - 45-145 PSIG (310-1000 kPa).

Ambient Temperature Range: -15°C to 49°C (5°F to 120°F)
Voltage Range: Rated Voltage +10%, -15%

Port Identification / Connections / Symbols


Port No.	Single Pressure	Dual Pressure	14 \	14 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
1	Inlet	Exhaust	5 1 3	513
2	Outlet	Outlet	5 Port, 2-Position	5 Port, 3-Position Pressure Center
3	Exhaust	Inlet		
4	Outlet	Outlet	4 2	4 2
5	Exhaust	Inlet	14 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	14
12, 14	Pilot ports for Pilot or Remo		5 Port, 3-Position All Ports Blocked	5 1 3 5 Port, 3-Position Center Exhaust

Valves may be used for single outlet (3-Way) by plugging an outlet Port.

NOTE: The operator identification describes the ports that are connected when the operator is energized: operator 12 connects Port 1 to Port 2; operator 14 connects Port 1 to Port 4. Other ports may also be connected, or blocked – see symbols on the valve.

NOTE: For dual pressure valves with internal piloting, it is recommended that the inlet port with the higher pressure be connected to Port #3 and be used for piloting.

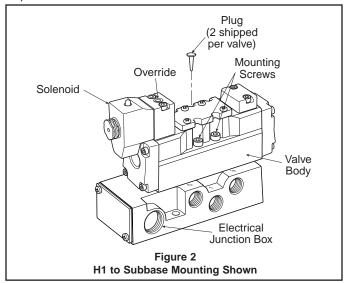
H1, H2 & H3 Valve Service **V470P**

- (()) Lightly grease with provided lubricant.
- Inspect for nicks, scratches, and surface imperfections. If present, reduced service life is probable and future
- replacement should be planned.
- Clean with lint-free cloth.

Figure 1			
(H1	Shown)		

Valve to Base Torque Values (Item 22)

	H1	H2 / H3
Torque - in.lb.	25 to 35	50 to 70
(Nm)	(2.8 to 3.9)	(5.6 to 7.9)


Item	Description	Item	Description	Item	Description
1	Body	11	Gasket - Body to End Cap	21	Pilot Bypass Plate
2	Pilot Select Gasket	12	Solenoid End Cap	22	Screw, Body to Base
3	Spool, 2-Position	13	Screws	23	Gasket, Body to Base
4	Gasket, Coil to End Cap	14	Solenoid Pilot Operator	24	H1 Auto Harness, Cover & Gasket
5	Spool, 3-Position, APB	15	Coil, Plug-in	24	(Automotive Version Only)
6	Spool, 3-Position, CE	16	Coil Nut	25	H2 & H3 Auto Harness, Cover & Gasket
7	Spool, 3-Position, PC	17	Coil, CNOMO	25	(Automotive Version Only)
8	Lip Seal, Piston	18	Screw, Solenoid Pilot Operator to Body	26	Screw, Body Cover
9	Piston - 2-Position	19	Return End Cap	27	Body Cover (Plug-in & Non Plug-in)
10	Piston - 3-Position	20	Spring, Return	28	O-ring

Valve to Base Mounting Procedures

Use the following procedure to mount valve to base:

- 1. Using a clean, lint free cloth, clean top surface of subbase and bottom surface of valve body.
- 2. Check to insure that gasket is properly seated in gasket track on valve body.
- 3. Place valve assembly on top of base. On electrically operated valves, line up plug with socket in base and gently press down on valve to seat plug properly.
- 4. Line up the mounting screws. Tighten using an allen wrench using progressive steps with a criss-cross pattern. See chart for torque specifications.
- 5. For new automotive valves with (5) five mounting holes in the valve body, plugs must be used to prevent foreign material from entering. For H1, H2, & H3 applications, the center hole is to be plugged with (1) one plug (See Figure 2). On applications with the valve mounted on the "F" series base, plug both outside holes.
- 6. Apply main pressure and check for leaks. If any are present, do not operate the valve - repeat the reassembly process until satisfactory.

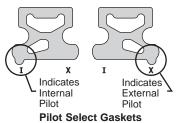
H1, H2 & H3 Valve Service V470P

Replacing Coil

Refer to Figure 1 to aid with disassembly and reassembly.

- 1. Remove Coil Nut (16), Coil (15 / 17) and Coil to End Cap Gasket (4).
- 2. Replace Coil (15 / 17) and Coil to End Cap Gasket (4).
- 3. Reassemble / replace Coil Nut (16).

Replacing Solenoid Pilot Operator H1, H2 & H3

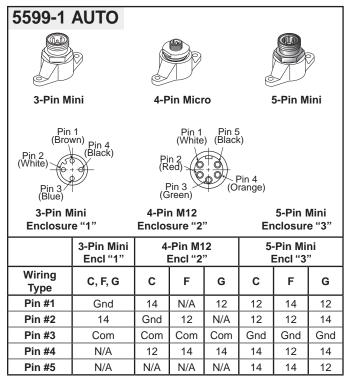

Refer to Figure 1 to aid with disassembly and reassembly.

- Remove Valve from base by removing Body to Base Screws (22).
- Remove Coil Nut (16), Coil (15 / 17) and Coil to End Cap Gasket (4).
- Remove Solenoid Pilot Operator (14) by removing the two Screws (18).
- 4. Remove Pilot Select Gasket (2).
- 5. Using a clean, lint free cloth, clean pilot select gasket sealing surface.
- 6. Replace the Solenoid Pilot Operator (14) and reassemble valve in reverse order of disassembly.
- Pressurize the valve and check for leaks. If any leak exists, repeat assembly process and retest until valve is leak free.

Pilot Pressure Supply

Conversion in the field from an internal pilot supply to an external pilot supply, or vice versa, is possible.

- For Solenoid Operator, remove Coil Nut and Coil. Remove the two (2) Screws on the Pilot Operator. For Remote Pilot Operator or Return Operator, remove the two (2) Screws securing it to the Body.
- Slip the Pilot Supply Gasket so that the small tab with the arrow points to either the "I" for internal supply, ot "X" for external supply.


- Reassemble and torque Screws to 1.4 to 1.6 Nm (12 to 14 in-lbs). Finger tighten Coil Nut.
- Apply main pressure and check for leaks. If any are present, do not operate the valve - repeat the reassembly process until satisfactory.
- Valve can be supplied with an external pilot supply pressure from either the #12 or #14 port on the base or end plate. The unused pilot port must be plugged.

Servicing Valve Body

Refer to Figure 1 to aid with disassembly and reassembly.

- 1. Remove Valve from base by removing Body to Base Screws (22).
- Remove Coil Nut(s) (16), Coil(s) (15 / 17) and Coil to End Cap Gasket(s) (4).
- 3. Remove Solenoid Pilot Operator(s) (14), if applicable, by removing the two Screws (18).
- 4. Remove Pilot Bypass Plate (21), if applicable, by removing the two Screws (13).
- 5. Remove Pilot Select Gasket(s) (2).
- Remove each End Cap (12 / 19) by removing the 4 Screws (13).
- 7. Remove the Pistons (9 or 10), Spool Return Spring (20), if applicable, and the Spool (3, 5, 6 or 7), being careful not to scratch the valve body bore.
- 8. Using a clean, lint free cloth, clean pilot select gasket sealing surface.
- Apply a light coating of grease to each part noted in Figure 1 and the mating sealing surface of each of these parts.
- 10. Reassemble valve in reverse order of disassembly, replacing the necessary parts. Care must be taken when reassembling the End Caps so that the wires do not become pinched between the End Cap and the Body, if applicable.
- 11. Pressurize the valve and check for leaks. If any leak exists, repeat assembly process and retest until valve is leak free.

Wiring - Auto C, F, G

5599-1 CNOMO 30mm 3-Pin ISO 4400 2-Pin M12 (DIN 43650A) Euro Option 'L' Option '6' Pin 4 (Black) SOLENOID Pin 3 (Blue) 30mm DIN M12 Micro Option 'L Option '6'

⚠ CAUTION: An interruption of 10 milliseconds or greater
to the power supplied to the solenoid of a solenoid
operated valve may cause the valve to shift. Provision
must be made to prevent power interruption of this
duration to avoid unintended, potentially hazardous,
consequences.

♠ CAUTION: Solenoid versions of this valve contain solid state components that can be damaged by transient voltage spikes, over-voltage or high temperature. To protect against premature solenoid failure, please read and adhere to the following:

If this solenoid operated valve is used in a circuit with other inductive loads. The solenoid should be electrically protected with a voltage suppression device (e.g. transient voltage suppressor or varistor) that has a minimum rating of 1.6 times the rated voltage of the solenoid valve and sufficient capacity to dissipate the energy of other inductive loads.

Body Service Kits

Valve	Kit Number	Description	Kit Includes (Qty.)
H1	PS4001CP		
H2	PS4101CP	2-Position Body Service Kit	All Parts Below Plus Return Spring (1)
НЗ	PS4201CP	Body Corvios rat	rtotani opinig (1)
H1	PS4002CP		
H2	PS4102CP	3-Position APB Body Service Kit	Spool (1)
НЗ	PS4202CP		
H1	PS4003CP		Piston Assembly (2) Pilot Select Gasket (2)
H2	PS4103CP	3-Position CE Body Service Kit	Coil to End Cap Gasket (2)
НЗ	PS4203CP	200, 00. 1.00 1.1.1	Coil Nut Vented (2) Coil Nut Tapped (2)
H1	PS4004CP		Grease Tube (1)
H2	PS4104CP	3-Position PC Body Service Kit	
НЗ	PS4204CP	250, 2511100 111	

5599-2 & 5599-1 Auto Solenoid Kits

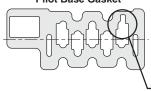
Kit Number	Voltage	Item* (Qty)
PS404123P	120/60VAC	
PS404142P	24/60VAC	
PS404145P	12VDC	15 (1)
PS404157P	240/60VAC	
PS4041B9P	24VDC	

^{*} See Figure 1

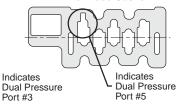
5599-1 CNOMO Solenoid Information and Kits

Voltage				Coil Kits	
Codo	AC		DC	3-Pin, 30mm	2-Pin, M12
Code	60Hz	50Hz	ЪС	Enclosure 'L'	Enclosure '6'
19	_	-	24	_	PS2828619P
42	24	24	_	P2FCA442	_
45	_	_	12	P2FCA445	_
49	_	_	24	P2FCA449	_
53	120	120	_	P2FCA453	_
57	230	230	_	P2FCA457	_

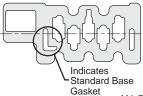
Solenoid Pilot Operator Kits


Kit Number	Description	Item* (Qty)
PS4052CP	Solenoid Pilot Operator / LMOR	14 (1), 2 (2), 18 (2)
PS4053CP	Solenoid Pilot Operator / NLMOR	14 (1), 2 (2), 18 (2)
PS4056CP	Coil Nut / Vented	16 (10)

^{*} See Figure 1


Accessory Kits

Vit Tuno	0414	Kit Number		
Kit Type	Qty	H1	H2	Н3
Valve Bolt Kit	12	PS4087DP	PS4187DP	PS4287DP
Base Gasket Kit - Standard	1	PS4005DP	PS4105DP	PS4205DP
Base Gasket Kit - Remote Pilot	1	PS4006DP	PS4106DP	PS4206DP
Base Gasket Kit - Dual Pressure Port #3 Pilot	1	PS40D3DP	PS41D3DP	PS42D3DP
Base Gasket Kit - Dual Pressure Port #5 Pilot	1	PS40D5DP	PS41D5DP	PS42D5DP
Pilot Select Gasket Kit	10	PS4007DP	_	_


Dual Pressure Port #3 Pilot Base Gasket

Dual Pressure Port #5 Pilot Base Gasket

Standard Base Gasket and Single Remote Pilot Gasket

Double Remote Pilot Base Gasket (Pilot Select Gasket must be converted to External Pilot on Both 14 & 12 Ends)

H1 Base Gaskets

Single Remote Pilot: Use Standard Base Gasket, 14 End Pilot Select Gasket to be assembled in the external pilot position, 12 End Pilot Select Gasket to be assembled as internal pilot.

Richland, Michigan 49083 269-629-5000

Installation & Service Instructions V471P

isys H2 & H3 Sandwich Regulators

ISSUED: November, 2009 Supersedes: January, 2007 Doc.#V-471P, EN090978, Rev. 3

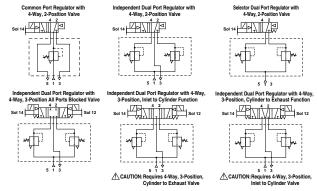
! WARNING

To avoid unpredictable system behavior that can cause personal injury and property damage:

- Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
- Disconnect air supply and depressurize all air lines connected to this
 product before installation, servicing, or conversion.
- Operate within the manufacturer's specified pressure, temperature, and other conditions listed in these instructions.
- Medium must be moisture-free if ambient temperature is below freezing.
- Service according to procedures listed in these instructions.
- Installation, service, and conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
- After installation, servicing, or conversion, air and electrical supplies (when necessary) should be connected and the product tested for proper function and leakage. If audible leakage is present, or the product does not operate properly, do not put into use.
- Warnings and specifications on the product should not be covered by paint, etc. If masking is not possible, contact your local representative for replacement labels.

⚠ WARNING

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THE PRODUCTS AND/OR SYSTEMS DESCRIBED HEREIN OR RELATED ITEMS CAN CAUSE DEATH, PERSONAL INJURY AND PROPERTY DAMAGE.


This document and other information from Parker Hannifin Corporation, its subsidiaries and authorized distributors provide product and/or system options for further investigation by users having technical expertise. It is important that you analyze all aspects of your application, including consequences of any failure and review the information concerning the product or systems in the current product catalog. Due to the variety of operating conditions and applications for these products or systems, the user, through its own analysis and testing, is solely responsible for making the final selection of the products and systems and assuring that all performance, safety and warning requirements of the application are met.

The products described herein, including without limitation, product features, specifications, designs, availability and pricing, are subject to change by Parker Hannifin Corporation and its subsidiaries at any time without notice.

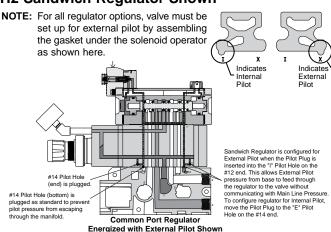
EXTRA COPIES OF THESE INSTRUCTIONS ARE AVAILABLE FOR INCLUSION IN EQUIPMENT / MAINTENANCE MANUALS THAT UTILIZE THESE PRODUCTS. CONTACT YOUR LOCAL REPRESENTATIVE.

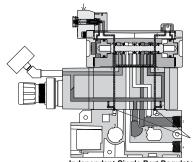
Introduction

Follow these instructions when installing, operating, or servicing the product.

NOTE: The Regulators shown on the 14 and 12 End of Independent Port and Selector Units may be replaced with a By-Pass Plate to provide unregulated pressure.

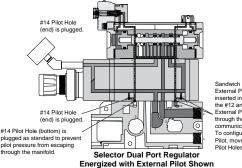
⚠ CAUTION: The reverse valve porting utilized with Independent Port will reverse the function of 4-Way, 3-Position cylinder to exhaust and 4-Way, 3-Position inlet to cylinder to valves. Utilize opposite function valve for normal operation.


Application Limits


These products are intended for use in general purpose compressed air systems only.

Operating Pressure Range: Maximum 145 PSIG (1000 kPa)

Ambient Temperature Range: -15°C to 49°C (5°F to 120°F)


H2 Sandwich Regulator Shown

Sandwich Regulator is configured for Internal Pilot when the Pilot Plugs are inserted into the "E" Pilot Holes on both the #12 and #14 ends. This prevents line pressure from escaping through the manifold. To configure the regulator for External Pilot, move the Pilot Plugs to the "I" Pilot Holes on both the #12 and #14 ends.

Independent Single Port Regulator Energized with Internal Pilot Shown

Sandwich Regulator is configured for External Pilot when the Pilot Plugs are inserted into the "P Pilot Holes on both the #12 and #14 ends. This allows External Pilot pressure from base to feed through the regulator to the valve without communicating with Main Line Pressure. To configure the regulator for Internal Pilot, move the Pilot Plugs to the "E" Pilot Holes no both the #12 and #14 ends.

Safety Guide

For more complete information on recommended application guidelines, see the Safety Guide section of Pneumatic Division catalogs or you can download the **Pneumatic Division Safety Guide** at: www.parker.com/safety

Installation

Remove pressure and electrical connections before installation.

- After removing Valve from Base, install four (H2, H3) Mounting Studs (26) from Regulator Kit to the Base, torque finger tight.
- H2 Common & Independent Port Versions Place Interface Block Track Seal (29) into Interface Block Assembly (22).
 - **H3 All Versions & H2B Selector Regulator Version-** Place the Gasket (29) over the Studs and on the Base.
- Install Regulator over Studs. Carefully engage the Electrical Plug (H2 5599-2, H3 5599-2).
- Install Valve onto Regulator. Carefully engage the Electrical Plug (H2 5599-2, H3 5599-2).
- 5. Tighten Valve Bolts (20) as follows:

Valve Type	No. of Bolts	Wrench Size	Torque Nm (InLb.)
H2	3 / 4	M5	13 to 15 (115 to 130)
H3	3 / 4	M6	14 to 16 (120 to 140)

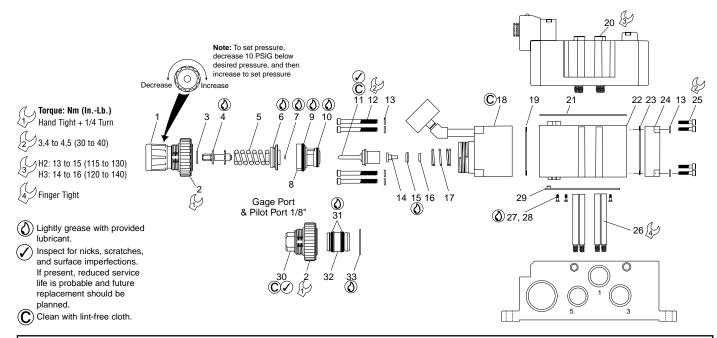
Apply main pressure and check for leaks – repeat assembly if leaks are present.

NOTE: If both a sandwich flow control and sandwich regulator are to be installed, the flow control should be installed between the regulator and the base. Both sets of studs should be installed to base before installing the flow control.

Lubrication

Factory pre-lubed. If lubricating in service, use Parker F442 oil or equivalent paraffin based mineral oil with 150 to 200 SSU viscosity @100°F.

CAUTION: Do not use oils that are synthetic, reconstituted, have an alcohol content or a detergent additive.


Component List

The components listed below are for identification purposes only, Some of these components are available in various Sandwich Regulator Kits, some are not available due to special factory assembly. Individual components are not sold separately since all kit components should be installed when serviced.

Item	Description	Item	Description
1	Bonnet Assembly	18	Housing, Regulator
2	Collar	19	Seal, Regulator Track
3	Thrust Washer	20	Screw, Valve Mounting - H2
4	Control Screw Assembly		Screw, Valve Mounting - H3
5	Spring, Control (30, 60 or 125 PSIG)	21	Gasket, Valve to Regulator Base
6	Diaphragm Assembly, Relieving	22	Block Assembly, Interface
	(Includes vent hole)	23	Seal, Bypass Cap Track
7	O-ring, Piston Vent	24	Bypass Cap, Dual Pressure
8	Seat Insert Assembly	25	Screw, Bypass Cap
9	O-ring, Upper Seat Insert	26	Stud, Mounting
10	O-ring, Lower Seat Insert	27	Plug, Pilot (H2 Regulator)
11	Poppet Assembly	28	Plug, Pilot (H3 Regulator,
12	Screw, Regulator Housing		H2 Valves, H3 Valves)
13	M5 Lockwasher	29	Seal, Interface Block Track
14	Retainer, Seal	30	Bonnet, Air Pilot
15	Vee Packing	31	O-ring, Piston
16	Retainer, Backflow	32	Piston
17	Spring, Poppet Return	33	O-ring, Air Pilot Cap

Sandwich Regulator Kits

Kit Number	Description	Kit Includes Item# (Qty.)
PS4009P	Repair Kit (H2, HB)	6, 7, 8, 9, 10, 11,
		17, 19 (2), 31, 33
PS4150030BP	Spring - 30 PSIG (H2, H3)	5
PS4150060BP	Spring - 60 PSIG (H2, H3)	5
PS4150125BP	Spring - 125 PSIG (H2, H3)	5
PS4109P	Pilot Plug Kit (H2)	27 (20)
PS4140P	Mounting Studs (H2)	26 (12)
PS4240P	Mounting Studs (H3)	26 (12)
PS4148BP	By-Pass Cap (H2, H3)	13 (4), 23, 24, 25 (4)
PS4154P	Regulator to Base Gasket Kit	29 (5)
	(H2 Common &	
	Independent Port)	
PS415401P	Regulator to Base Gasket	
	(H2 Selector)	29 (5)
PS4254P	Regulator to Base	
	Gasket Kit (H3)	29 (5)

For all Instruction Sheets, go to www.parker.com/pneumatics

V450P - isys HA 26mm & HB 18mm ISO 15407-2 Valve Service

V452P - isys HA & HB ISO 15407-2 Sandwich Flow Controls

V453P - isys HA & HB ISO 15407-2 Manifold Installation

V454P - isys HA & HB Sandwich Regulators

V467P - isys H1 Sandwich Regulators

V468P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Sandwich Flow Controls V469P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Subbase & Manifold Installation

V470P - isys H1, H2 & H3, ISO 5599-1, 5599-2 Valve Service

V471P - isys H2 & H3 Sandwich Regulators

Pneumatic Division Richland, Michigan 49083 269-629-5000

PDNSG-1

Pneumatic Division Safety Guide

ISSUED: August 1, 2006

Supersedes: June 1, 2006

Safety Guide For Selecting And Using Pneumatic Division Products And Related Accessories • WARNING:

FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF PNEUMATIC DIVISION PRODUCTS, ASSEMBLIES OR RELATED ITEMS ("PRODUCTS") CAN CAUSE DEATH, PERSONAL INJURY, AND PROPERTY DAMAGE. POSSIBLE CONSEQUENCES OF FAILURE OR IMPROPER SELECTION OR IMPROPER USE OF THESE PRODUCTS INCLUDE BUT ARE NOT LIMITED TO:

- Unintended or mistimed cycling or motion of machine members or failure to cycle
- Work pieces or component parts being thrown off at high speeds.
- Failure of a device to function properly for example, failure to clamp or unclamp an associated item or device.
- Explosion
- · Suddenly moving or falling objects.
- · Release of toxic or otherwise injurious liquids or gasses.

Before selecting or using any of these Products, it is important that you read and follow the instructions below.

1. GENERAL INSTRUCTIONS

- **1.1. Scope:** This safety guide is designed to cover general guidelines on the installation, use, and maintenance of Pneumatic Division Valves, FRLs (Filters, Pressure Regulators, and Lubricators), Vacuum products and related accessory components.
- 1.2. Fail-Safe: Valves, FRLs, Vacuum products and their related components can and do fail without warning for many reasons. Design all systems and equipment in a fail-safe mode, so that failure of associated valves, FRLs or Vacuum products will not endanger persons or property.
- **1.3 Relevant International Standards:** For a good guide to the application of a broad spectrum of pneumatic fluid power devices see: ISO 4414:1998, Pneumatic Fluid Power General Rules Relating to Systems. See www.iso.org for ordering information.
- **1.4. Distribution:** Provide a copy of this safety guide to each person that is responsible for selection, installation, or use of Valves, FRLs or Vacuum products. Do not select, or use Parker valves, FRLs or vacuum products without thoroughly reading and understanding this safety guide as well as the specific Parker publications for the products considered or selected.
- 1.5. User Responsibility: Due to the wide variety of operating conditions and applications for valves, FRLs, and vacuum products Parker and its distributors do not represent or warrant that any particular valve, FRL or vacuum product is suitable for any specific end use system. This safety guide does not analyze all technical parameters that must be considered in selecting a product. The user, through its own analysis and testing, is solely responsible for:
 - · Making the final selection of the appropriate valve, FRL, Vacuum component, or accessory.
 - Assuring that all user's performance, endurance, maintenance, safety, and warning requirements are met and that the application presents no health or safety hazards.
 - Complying with all existing warning labels and / or providing all appropriate health and safety warnings on the equipment on which the valves, FRLs or Vacuum products are used; and,
 - Assuring compliance with all applicable government and industry standards.
- 1.6. Safety Devices: Safety devices should not be removed, or defeated.
- 1.7. Warning Labels: Warning labels should not be removed, painted over or otherwise obscured.
- **1.8. Additional Questions:** Call the appropriate Parker technical service department if you have any questions or require any additional information. See the Parker publication for the product being considered or used, or call 1-800-CPARKER, or go to www.parker.com, for telephone numbers of the appropriate technical service department.

2. PRODUCT SELECTION INSTRUCTIONS

- **2.1. Flow Rate:** The flow rate requirements of a system are frequently the primary consideration when designing any pneumatic system. System components need to be able to provide adequate flow and pressure for the desired application.
- **2.2. Pressure Rating:** Never exceed the rated pressure of a product. Consult product labeling, Pneumatic Division catalogs or the instruction sheets supplied for maximum pressure ratings.
- 2.3. Temperature Rating: Never exceed the temperature rating of a product. Excessive heat can shorten the life expectancy of a product and result in complete product failure.
- **2.4. Environment:** Many environmental conditions can affect the integrity and suitability of a product for a given application. Pneumatic Division products are designed for use in general purpose industrial applications. If these products are to be used in unusual circumstances such as direct sunlight and/or corrosive or caustic environments, such use can shorten the useful life and lead to premature failure of a product.
- 2.5. Lubrication and Compressor Carryover: Some modern synthetic oils can and will attack nitrile seals. If there is any possibility of synthetic oils or greases migrating into the pneumatic components check for compatibility with the seal materials used. Consult the factory or product literature for materials of construction.
- 2.6. Polycarbonate Bowls and Sight Glasses: To avoid potential polycarbonate bowl failures:
 - Do not locate polycarbonate bowls or sight glasses in areas where they could be subject to direct sunlight, impact blow, or temperatures outside of the rated range.
 - · Do not expose or clean polycarbonate bowls with detergents, chlorinated hydro-carbons, keytones, esters or certain alcohols.
 - Do not use polycarbonate bowls or sight glasses in air systems where compressors are lubricated with fire resistant fluids such as
 phosphate ester and di-ester lubricants.

- 2.7. Chemical Compatibility: For more information on plastic component chemical compatibility see Pneumatic Division technical bulletins Tec-3, Tec-4, and Tec-5
- 2.8. Product Rupture: Product rupture can cause death, serious personal injury, and property damage.
 - Do not connect pressure regulators or other Pneumatic Division products to bottled gas cylinders.
 - · Do not exceed the maximum primary pressure rating of any pressure regulator or any system component.
 - · Consult product labeling or product literature for pressure rating limitations.

3. PRODUCT ASSEMBLY AND INSTALLATION INSTRUCTIONS

- **3.1. Component Inspection:** Prior to assembly or installation a careful examination of the valves, FRLs or vacuum products must be performed. All components must be checked for correct style, size, and catalog number. DO NOT use any component that displays any signs of nonconformance.
- **3.2.** Installation Instructions: Parker published Installation Instructions must be followed for installation of Parker valves, FRLs and vacuum components. These instructions are provided with every Parker valve or FRL sold, or by calling 1-800-CPARKER, or at www.parker.com.
- **3.3.** Air Supply: The air supply or control medium supplied to Valves, FRLs and Vacuum components must be moisture-free if ambient temperature can drop below freezing

4. VALVE AND FRL MAINTENANCE AND REPLACEMENT INSTRUCTIONS

- **4.1. Maintenance:** Even with proper selection and installation, valve, FRL and vacuum products service life may be significantly reduced without a continuing maintenance program. The severity of the application, risk potential from a component failure, and experience with any known failures in the application or in similar applications should determine the frequency of inspections and the servicing or replacement of Pneumatic Division products so that products are replaced before any failure occurs. A maintenance program must be established and followed by the user and, at minimum, must include instructions 4.2 through 4.10.
- 4.2. Installation and Service Instructions: Before attempting to service or replace any worn or damaged parts consult the appropriate Service Bulletin for the valve or FRL in question for the appropriate practices to service the unit in question. These Service and Installation Instructions are provided with every Parker valve and FRL sold, or are available by calling 1-800-CPARKER, or by accessing the Parker web site at www.parker.com.
- **4.3. Lockout / Tagout Procedures:** Be sure to follow all required lockout and tagout procedures when servicing equipment. For more information see: OSHA Standard 29 CFR, Part 1910.147, Appendix A, The Control of Hazardous Energy (Lockout / Tagout)
- **4.4. Visual Inspection:** Any of the following conditions requires immediate system shut down and replacement of worn or damaged components:
 - Air leakage: Look and listen to see if there are any signs of visual damage to any of the components in the system. Leakage is an indication of worn or damaged components.
 - Damaged or degraded components: Look to see if there are any visible signs of wear or component degradation.
 - Kinked, crushed, or damaged hoses. Kinked hoses can result in restricted air flow and lead to unpredictable system behavior.
 - · Any observed improper system or component function: Immediately shut down the system and correct malfunction.
 - Excessive dirt build-up: Dirt and clutter can mask potentially hazardous situations.

Caution: Leak detection solutions should be rinsed off after use.

4.5. Routine Maintenance Issues:

- · Remove excessive dirt, grime and clutter from work areas.
- · Make sure all required guards and shields are in place.
- **4.6. Functional Test:** Before initiating automatic operation, operate the system manually to make sure all required functions operate properly and safely.
- **4.7. Service or Replacement Intervals:** It is the user's responsibility to establish appropriate service intervals. Valves, FRLs and vacuum products contain components that age, harden, wear, and otherwise deteriorate over time. Environmental conditions can significantly accelerate this process. Valves, FRLs and vacuum components need to be serviced or replaced on routine intervals. Service intervals need to be established based on:
 - · Previous performance experiences.
 - Government and / or industrial standards.
 - · When failures could result in unacceptable down time, equipment damage or personal injury risk.
- **4.8. Servicing or Replacing of any Worn or Damaged Parts:** To avoid unpredictable system behavior that can cause death, personal injury and property damage:
 - Follow all government, state and local safety and servicing practices prior to service including but not limited to all OSHA Lockout Tagout procedures (OSHA Standard – 29 CFR, Part 1910.147, Appendix A, The Control of Hazardous Energy – Lockout / Tagout).
 - · Disconnect electrical supply (when necessary) before installation, servicing, or conversion.
 - Disconnect air supply and depressurize all air lines connected to system and Pneumatic Division products before installation, service, or conversion.
 - Installation, servicing, and / or conversion of these products must be performed by knowledgeable personnel who understand how pneumatic products are to be applied.
 - After installation, servicing, or conversions air and electrical supplies (when necessary) should be connected and the product tested
 for proper function and leakage. If audible leakage is present, or if the product does not operate properly, do not put product or
 system into use.
 - Warnings and specifications on the product should not be covered or painted over. If masking is not possible, contact your local representative for replacement labels.
- **4.9. Putting Serviced System Back into Operation:** Follow the guidelines above and all relevant Installation and Maintenance Instructions supplied with the valve FRL or vacuum component to insure proper function of the system.